1
|
Gu Y, Xu W, Guo Y, Gao Y, Zhu J. Development and characterization of tilapia skin collagen-inulin oleogel as the potential fat substitute in beef patty formulations. Int J Biol Macromol 2024; 280:135785. [PMID: 39304057 DOI: 10.1016/j.ijbiomac.2024.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The effects of inulin addition, olive oil content, and ultrasonic treatment on the rheological, texture, and structural properties of collagen-based oleogels were investigated in this study. Furthermore, the fat substitution ability of the oleogel in low-fat beef patties was evaluated. Initially, a uniform and dense network cross-linked structure was found when the ratio of collagen to inulin complex was 1:5. The oleogel sample exhibited good stability and oil binding ability with an additional amount of 50 % olive oil. Ultrasonic treatment improved the stability of the oleogel structure in all samples. Additionally, the addition of inulin reduced cooking loss in beef patties. Beef patties prepared at a 50 % fat substitution level showed physical properties that were the least different from those of pure adipose tissue (control group), which could significantly reduce the content of saturated fatty acids and improve the storage stability of beef patties. This study provided guidance for the application of collagen-inulin oleogel in food processing.
Collapse
Affiliation(s)
- Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Weiwei Xu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanjie Guo
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Yongfang Gao
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
2
|
Darko HSO, Ismaiel L, Fanesi B, Pacetti D, Lucci P. Current Trends in Food Processing By-Products as Sources of High Value-Added Compounds in Food Fortification. Foods 2024; 13:2658. [PMID: 39272424 PMCID: PMC11394074 DOI: 10.3390/foods13172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Along the food production chain of animal, fish, and vegetable products, a huge amount of by-products are generated every year. Major nutritional, financial, and environmental advantages can be achieved by transforming them into functional ingredients for food formulation and fortification. In this review, we investigated various conventional and emerging treatments recently employed to obtain functional ingredients rich in proteins, fibers, and bioactive compounds from vegetables, fish, meat, and dairy by-products. The optimal enrichment level in food as well as the nutritional, techno-functional, and sensory properties of the final food were also discussed. Novel technologies such as ultrasounds, microwaves, and high pressure have been successfully adopted to enhance the extraction of target compounds. The functional ingredients, added both in liquid or powder form, were able to improve the nutritional quality and antioxidant potential of food, although high levels of fortification may cause undesired changes in texture and flavor. This review provides important considerations for further industrial scale-up.
Collapse
Affiliation(s)
- Helen Stephanie Ofei Darko
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lama Ismaiel
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Benedetta Fanesi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
4
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Huang Y, Nie Y, Zhou F, Li B, Luo Q, Zhang B, Zeng Q, Huang Y. Effects of collagen-based coating with chitosan and ε-polylysine on sensory, texture, and biochemical changes of refrigerated Nemipterus virgatus fillets. Food Sci Nutr 2024; 12:2145-2152. [PMID: 38455186 PMCID: PMC10916661 DOI: 10.1002/fsn3.3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
In order to evaluate the effects of chitosan, ε-polylysine, and collagen on the preservation properties of refrigerated Nemipterus virgatus, samples were tested with different treatments for 10 days, namely chitosan, ε-polylysine and collagen (CH + ε-PL + CA), chitosan and ε-polylysine (CH + ε-PL), chitosan and collagen (CH + CA), ε-polylysine and collagen (ε-PL + CA), and the uncoated sample (CK). The results demonstrated that the bio-coating exhibited better preservation effects. The CH + ε-PL + CA, CH + ε-PL, CH + CA, ε-PL + CA treatments could significantly inhibit bacterial growth and retard the increase of total volatile base nitrogen (TVB-N), 2-thiobarbituric acid (TBA), K-value, and total viable counts (TVC) in N. virgatus fillets. The pH of all samples decreased and reached its lowest value on day 6, then increased significantly at the end of the experiment (p < .05). Water-holding capacity (WHC) of all the groups decreased continuously throughout storage, and CK reached 66.03% on day 6, which is significantly lower than CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA (p < .05). On the contrary, the sensory scores of CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA were significantly higher than the control, and the score of CH + ε-PL + CA (p < .05) was the best among all the groups. In terms of texture, CH + PL + CA also showed less cell shrinkage and tighter muscle fiber arrangement compared to other treatments. To sum up, the CH + PL + CA bio-coating proved to be a promising method for maintaining the storage quality of N. virgatus under refrigerated storage conditions.
Collapse
Affiliation(s)
- Yongping Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Ying Nie
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Fei Zhou
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Biansheng Li
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Qiulan Luo
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Bin Zhang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Qinpei Zeng
- Guangdong Wuqiong Food Group Co., LTDChaozhouChina
| | - Yisheng Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| |
Collapse
|
6
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Russo GL, Langellotti AL, Torrieri E, Masi P. Emerging technologies in seafood processing: An overview of innovations reshaping the aquatic food industry. Compr Rev Food Sci Food Saf 2024; 23:e13281. [PMID: 38284572 DOI: 10.1111/1541-4337.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024]
Abstract
Seafood processing has traditionally been challenging due to the rapid spoilage rates and quality degradation of these products. With the rise of food science and technology, novel methods are being developed to overcome these challenges and improve seafood quality, shelf life, and safety. These methods range from high-pressure processing (HPP) to edible coatings, and their exploration and application in seafood processing are of great importance. This review synthesizes the recent advancements in various emerging technologies used in the seafood industry and critically evaluates their efficacy, challenges, and potential benefits. The technologies covered include HPP, ultrasound, pulsed electric field, plasma technologies, pulsed light, low-voltage electrostatic field, ozone, vacuum cooking, purified condensed smoke, microwave heating, and edible coating. Each technology offers unique advantages and presents specific challenges; however, their successful application largely depends on the nature of the seafood product and the desired result. HPP and microwave heating show exceptional promise in terms of quality retention and shelf-life extension. Edible coatings present a multifunctional approach, offering preservation and the potential enhancement of nutritional value. The strength, weakness, opportunity, and threat (SWOT) analysis indicates that, despite the potential of these technologies, cost-effectiveness, scalability, regulatory considerations, and consumer acceptance remain crucial issues. As the seafood industry stands on the cusp of a technological revolution, understanding these nuances becomes imperative for sustainable growth. Future research should focus on technological refinements, understanding consumer perspectives, and developing regulatory frameworks to facilitate the adoption of these technologies in the seafood industry.
Collapse
Affiliation(s)
| | | | - Elena Torrieri
- CAISIAL Centre, University of Naples Federico II, Portici, Italy
- Department of Agricultural Sciences, Unit of Food Science and Technology-University of Naples Federico II, Portici, Italy
| | - Paolo Masi
- CAISIAL Centre, University of Naples Federico II, Portici, Italy
- Department of Agricultural Sciences, Unit of Food Science and Technology-University of Naples Federico II, Portici, Italy
| |
Collapse
|
8
|
Melo MMP, Mesquita RBR, Coscueta ER, Pintado ME, Rangel AOSS. Assessment of collagen content in fish skin - development of a flow analysis method for hydroxyproline determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5901-5908. [PMID: 37902049 DOI: 10.1039/d3ay01589k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
This work describes the development of a flow injection method to determine hydroxyproline (HYP), one of collagen's most abundant amino acids. Collagen is a protein with several applications and high nutritional value. Evaluating the feasibility of using collagen from fish skin over its mammalian source is essential. The determination of HYP requires the pre-treatment and hydrolysis of the fish skin to break down collagen into its amino acids, and the HYP value quantified relates to the collagen content. The determination was based on the HYP oxidation with permanganate in an alkaline medium and the consequent decrease of colour intensity registered. Under optimal conditions, the developed method enables the determination of the HYP within the dynamic range of 23.8 to 500 mg L-1, with a limit of detection (LOD) of 2.6 mg L-1 and a limit of quantification (LOQ) of 23.8 mg L-1. Different samples were processed, and the digests were analysed by the proposed method and with the conventional procedure with good correlation (relative error < 7%). Moreover, the analyte quantification is performed faster, simpler, and more accurately, with less toxic solutions. The reproducibility of the developed method was also evaluated by calculating the relative standard deviation of the calibration curve slope (RSD < 1%).
Collapse
Affiliation(s)
- Maria M P Melo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Raquel B R Mesquita
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Ezequiel R Coscueta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - António O S S Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
9
|
Hashemi SMB, Kaveh S, Abedi E, Phimolsiripol Y. Polysaccharide-Based Edible Films/Coatings for the Preservation of Meat and Fish Products: Emphasis on Incorporation of Lipid-Based Nanosystems Loaded with Bioactive Compounds. Foods 2023; 12:3268. [PMID: 37685201 PMCID: PMC10487091 DOI: 10.3390/foods12173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The high water and nutritional contents of meat and fish products make them susceptible to spoilage. Thus, one of the most important challenges faced by the meat industry is extending the shelf life of meat and fish products. In recent years, increasing concerns associated with synthetic compounds on health have limited their application in food formulations. Thus, there is a great need for natural bioactive compounds. Direct use of these compounds in the food industry has faced different obstacles due to their hydrophobic nature, high volatility, and sensitivity to processing and environmental conditions. Nanotechnology is a promising method for overcoming these challenges. Thus, this article aims to review the recent knowledge about the effect of biopolymer-based edible films or coatings on the shelf life of meat and fish products. This study begins by discussing the effect of biopolymer (pectin, alginate, and chitosan) based edible films or coatings on the oxidation stability and microbial growth of meat products. This is followed by an overview of the nano-encapsulation systems (nano-emulsions and nanoliposomes) and the effect of edible films or coatings incorporated with nanosystems on the shelf life of meat and fish products.
Collapse
Affiliation(s)
- Seyed Mohammad Bagher Hashemi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa 74616-86131, Iran; (S.M.B.H.); (E.A.)
| | - Shima Kaveh
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan 49189-43464, Iran
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa 74616-86131, Iran; (S.M.B.H.); (E.A.)
| | | |
Collapse
|
10
|
Ma Y, Chen S, Liu P, He Y, Chen F, Cai Y, Yang X. Gelatin Improves the Performance of Oregano Essential Oil Nanoparticle Composite Films-Application to the Preservation of Mullet. Foods 2023; 12:2542. [PMID: 37444279 DOI: 10.3390/foods12132542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the addition of oregano oil chitosan nanoparticles (OEO-CSNPs) was conducted to enhance the comprehensive properties of gelatin films (GA), and the optimal addition ratio of nanoparticles was determined for its application in the preservation of mullet. Oregano oil chitosan nanoparticles were organically combined with gelatin at different concentrations (0%, 2%, 4%, 6% and 8%) to obtain oregano oil-chitosan nanoparticle-GA-based composite films (G/OEO-CSNPs), and thereafter G/OEO-CSNPs were characterized and investigated for their preservative effects on mullet. Subsequent analysis revealed that OEO-CSNPs were uniformly dispersed in the GA matrix, and that G/OEO-CSNPs had significantly improved mechanical ability, UV-visible light blocking performance and thermal stability. Furthermore, the nanoparticles exhibited excellent antioxidant and antibacterial properties, and they improved the films' suitability as edible packaging. The attributes of the G/OEO-CSNPs were optimized, the films had the strongest radical scavenging and lowest water solubility, and electron microscopy also showed nanoparticle penetration into the polymer when the concentration of OEO-CSNPs was 6% (thickness = 0.092 ± 0.001, TS = 47.62 ± 0.37, E = 4.06 ± 0.17, water solubility = 48.00 ± 1.11). Furthermore, the GA-based composite film containing 6% OEO-CSNPs was able to inhibit microbial growth, slow fat decomposition and protein oxidation, reduce endogenous enzyme activity, and delay the spoilage of mullet during the refrigeration process, all of which indicate its excellent potential for meat preservation application.
Collapse
Affiliation(s)
- Yuan Ma
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Siqi Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ping Liu
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yezheng He
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Fang Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yifan Cai
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xianqin Yang
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
11
|
Tian X, Zhao K, Teng A, Li Y, Wang W. A rethinking of collagen as tough biomaterials in meat packaging: assembly from native to synthetic. Crit Rev Food Sci Nutr 2022; 64:957-977. [PMID: 35997287 DOI: 10.1080/10408398.2022.2111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the high moisture-associated typical rheology and the changeable and harsh processing conditions in the production process, packaging materials for meat products have higher requirements including a sufficient mechanical strength and proper ductility. Collagen, a highly conserved structural protein consisting of a triple helix of Gly-X-Y repeats, has been proved to be suitable packaging material for meat products. The treated animal digestive tract (i.e. the casing) is the perfect natural packaging material for wrapping meat into sausage. Its thin walls, strong toughness and impact resistance make it the oldest and best edible meat packaging. Collagen casing is another wisdom of meat packaging, which is made by collagen fibers from hide skin, presenting a rapid growth in casing market. To strengthen mechanical strength and barrier behaviors of collagen-based packaging materials, different physical, chemical, and biological cross-linking methods are springing up exuberantly, as well as a variety of reinforcement approaches including nanotechnology. In addition, the rapid development of biomimetic technology also provides a good research idea and means for the promotion of collagen's assembly and relevant mechanical properties. This review can offer some reference on fundamental theory and practical application of collagenous materials in meat products.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - KaiXuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Anguo Teng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
12
|
Ahmed M, Anand A, Verma AK, Patel R. In-vitro self-assembly and antioxidant properties of collagen type I from Lutjanus erythropterus, and Pampus argenteus skin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Batista MP, Fernández N, Gaspar FB, Bronze MDR, Duarte ARC. Extraction of Biocompatible Collagen From Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents. Front Chem 2022; 10:937036. [PMID: 35783202 PMCID: PMC9243641 DOI: 10.3389/fchem.2022.937036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The disposal of large amounts of skin waste resulting from the blue shark fishing industry presents several industrial and environmental waste management concerns. In addition, these marine subproducts are interesting sources of collagen, a fibrous protein that shows high social and economic interest in a broad range of biomedical, pharmaceutical, and cosmetic applications. However, blue shark wasted skins are a poorly explored matrix for this purpose, and conventional collagen recovery methodologies involve several pre-treatment steps, long extraction times and low temperatures. This work presents a new green and sustainable collagen extraction approach using a natural deep eutectic solvent composed of citric acid:xylitol:water at a 1:1:10 molar ratio, and the chemical characterization of the extracted collagen by discontinuous electrophoresis, thermogravimetric analysis, Fourier transformed infrared spectroscopy and circular dichroism. The extracted material was a pure type I collagen, and the novel approach presented an extraction yield 2.5 times higher than the conventional one, without pre-treatment of raw material and reducing the procedure time from 96 to 1 h. Furthermore, the in vitro cytotoxicity evaluation, performed with a mouse fibroblasts cell line, has proven the biocompatibility of the extracted material. Overall, the obtained results demonstrate a simple, quick, cheap and environmentally sustainable process to obtain marine collagen with promising properties for biomedical and cosmetic applications.
Collapse
Affiliation(s)
- Miguel P. Batista
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Frédéric B. Gaspar
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria do Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- FFULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- *Correspondence: Ana Rita C. Duarte,
| |
Collapse
|
14
|
Koczoń P, Josefsson H, Michorowska S, Tarnowska K, Kowalska D, Bartyzel BJ, Niemiec T, Lipińska E, Gruczyńska-Sękowska E. The Influence of the Structure of Selected Polymers on Their Properties and Food-Related Applications. Polymers (Basel) 2022; 14:polym14101962. [PMID: 35631843 PMCID: PMC9146511 DOI: 10.3390/polym14101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Every application of a substance results from the macroscopic property of the substance that is related to the substance’s microscopic structure. For example, the forged park gate in your city was produced thanks to the malleability and ductility of metals, which are related to the ability of shifting of layers of metal cations, while fire extinguishing powders use the high boiling point of compounds related to their regular ionic and covalent structures. This also applies to polymers. The purpose of this review is to summarise and present information on selected food-related biopolymers, with special attention on their respective structures, related properties, and resultant applications. Moreover, this paper also highlights how the treatment method used affects the structure, properties, and, hence, applications of some polysaccharides. Despite a strong focus on food-related biopolymers, this review is addressed to a broad community of both material engineers and food researchers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | | | - Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Niemiec
- Animals Nutrition Department, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
- Correspondence:
| |
Collapse
|
15
|
Devita L, Nurilmala M, Lioe HN, Suhartono MT. Chemical and Antioxidant Characteristics of Skin-Derived Collagen Obtained by Acid-Enzymatic Hydrolysis of Bigeye Tuna ( Thunnus obesus). Mar Drugs 2021; 19:222. [PMID: 33923409 PMCID: PMC8072911 DOI: 10.3390/md19040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
The utilization of bigeye tuna skin as a source of collagen has been increasing the value of these skins. In this study, the quality of the skin was studied first. The skin after 14 h freeze-drying showed a high protein level (65.42% ± 0.06%, db), no histamine and a lack of heavy metals. The collagens were extracted through acid and acid-enzymatic methods. The enzymes used were bromelain, papain, pepsin, and trypsin. The two highest-yield collagens were pepsin-soluble collagen (PSC) and bromelain-soluble collagen (BSC). Both were type I collagen, based on SDS-PAGE and FTIR analysis. They dissolved very well in dimethyl sulfoxide and distilled water. The pH ranges were 4.60-4.70 and 4.30-4.40 for PSC and BSC, respectively. PSC and BSC were free from As, Cd, Co, Cr, Cu, and Pb. They showed antioxidant activities, as determined by the DPPH method and the reducing power method. In conclusion, bigeye tuna skin shows good potential as an alternative source of mammalian collagen. Although further work is still required, PSC and BSC showed the potential to be further used as antioxidant compounds in food applications. Other biological tests of these collagens might also lead to other health applications.
Collapse
Affiliation(s)
- Liza Devita
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
- The Ministry of Agriculture Republic Indonesia, Jakarta 12550, Indonesia
| | - Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia;
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| | - Maggy T. Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| |
Collapse
|
16
|
Coppola D, Lauritano C, Palma Esposito F, Riccio G, Rizzo C, de Pascale D. Fish Waste: From Problem to Valuable Resource. Mar Drugs 2021; 19:116. [PMID: 33669858 PMCID: PMC7923225 DOI: 10.3390/md19020116] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Carmen Rizzo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|