1
|
Jia ZC, Liu SJ, Chen TF, Shi ZZ, Li XL, Gao ZW, Zhang Q, Zhong CF. Chlorogenic acid can improve spermatogenic dysfunction in rats with varicocele by regulating mitochondrial homeostasis and inhibiting the activation of NLRP3 inflammasomes by oxidative mitochondrial DNA and cGAS/STING pathway. Bioorg Chem 2024; 150:107571. [PMID: 38936048 DOI: 10.1016/j.bioorg.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In recent years, Varicocele (VC) has been recognized as a common cause of male infertility that can be treated by surgery or drugs. How to reduce the damage of VC to testicular spermatogenic function has attracted extensive attention in recent years. Among them, overexpressed ROS and high levels of inflammation may play a key role in VC-induced testicular damage. As the key mediated innate immune pathways, cGAS-STING shaft under pathological conditions, such as in cell and tissue damage stress can be cytoplasmic DNA activation, induce the activation of NLRP3 inflammatory corpuscle, triggering downstream of the inflammatory cascade reaction. Chlorogenic acid (CGA), as a natural compound from a wide range of sources, has strong anti-inflammatory and antioxidant activities, and is a potential effective drug for the treatment of varicocele infertility. The aim of this study is to investigate the role of CGA in the spermatogenic dysfunction of the rat testis induced by VC and the potential mechanisms. The results of this study have shown that CGA gavage treatment ameliorated the pathological damage of seminiferous tubules, increased the number of sperm in the lumen, and increased the expression levels of Occludin and ZO-1, which indicated the therapeutic effect of CGA on spermatogenic dysfunction in the testis of VC rats. Meanwhile, the damage of mitochondrial structure was alleviated and the expression levels of ROS, NLRP3 and pro-inflammatory cytokines (IL-1β, IL-6, IL-18) were significantly reduced in the testicular tissues of model rats after CGA treatment. In addition, we demonstrated for the first time the high expression status of cGAS and STING in testicular tissues of VC model rats, and this was ameliorated to varying degrees after CGA treatment. In conclusion, this study suggests that CGA can improve the spermatogenic function of the testis by reducing mitochondrial damage and inhibiting the activation of the cGAS-STING axis, inhibiting the activation of the NLRP3 inflammasome, and improving the inflammatory damage of the testis, highlighting the potential of CGA as a therapeutic agent for varicocele infertility.
Collapse
Affiliation(s)
- Zhi-Chao Jia
- Shandong University of Traditional Chinese Medicine, Shandong, Jinan 250000, China
| | - Sheng-Jing Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Teng-Fei Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, Jinan 250000, China
| | - Zhuo-Zhuo Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, Jinan 250000, China
| | - Xiao-Lin Li
- Shandong University of Traditional Chinese Medicine, Shandong, Jinan 250000, China
| | - Zhao-Wang Gao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, Jinan 250000, China
| | - Qian Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, Jinan 250000, China.
| | - Chong-Fu Zhong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, Jinan 250000, China.
| |
Collapse
|
2
|
Odetayo AF, Akhigbe RE, Hamed MA, Balogun ME, Oluwole DT, Olayaki LA. Omega-3 fatty acids abrogates oxido-inflammatory and mitochondrial dysfunction-associated apoptotic responses in testis of tamoxifen-treated rats. Front Nutr 2024; 11:1443895. [PMID: 39149552 PMCID: PMC11324566 DOI: 10.3389/fnut.2024.1443895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Background Tamoxifen (TAM) is a widely used drug in patients with gynecomastia and breast cancer. TAM exerts its anticancer effects via its antiestrogenic activities. Unfortunately, TAM has been reported to exert gonadotoxic effects on male testes. Therefore, this study was designed to explore the possible associated mechanisms involved in TAM-induced testicular dysfunction and the possible ameliorative effects of omega-3 fatty acids (O3FA). Methodology Animals were randomly divided into control, O3FA, TAM, and TAM + O3FA. All treatment lasted for 28 days. Results TAM exposure impaired sperm qualities (count, motility, and normal morphology) and decreased testicular 3β-HSD and 17β-HSD. It was accompanied by a decline in serum testosterone and an increase in estradiol, luteinizing and follicle-stimulating hormones. These observed alterations were associated with an increase in testicular injury markers, oxido-inflammatory response, and mitochondria-mediated apoptosis. These observed alterations were ameliorated by O3FA treatments. Conclusions O3FA ameliorated TAM-induced testicular dysfunction in male Wistar rats by modulating XO/UA and Nrf2/NF-kb signaling and cytochrome c-mediated apoptosis in TAM-treated rats.
Collapse
Affiliation(s)
- Adeyemi Fatai Odetayo
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Ila Orangun, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | - Morufu Eyitayo Balogun
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Ila Orangun, Nigeria
| | | | | |
Collapse
|
3
|
Cortez N, Villegas C, Burgos V, Ortiz L, Cabrera-Pardo JR, Paz C. Therapeutic Potential of Chlorogenic Acid in Chemoresistance and Chemoprotection in Cancer Treatment. Int J Mol Sci 2024; 25:5189. [PMID: 38791228 PMCID: PMC11121551 DOI: 10.3390/ijms25105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chemotherapeutic drugs are indispensable in cancer treatment, but their effectiveness is often lessened because of non-selective toxicity to healthy tissues, which triggers inflammatory pathways that are harmful to vital organs. In addition, tumors' resistance to drugs causes failures in treatment. Chlorogenic acid (5-caffeoylquinic acid, CGA), found in plants and vegetables, is promising in anticancer mechanisms. In vitro and animal studies have indicated that CGA can overcome resistance to conventional chemotherapeutics and alleviate chemotherapy-induced toxicity by scavenging free radicals effectively. This review is a summary of current information about CGA, including its natural sources, biosynthesis, metabolism, toxicology, role in combatting chemoresistance, and protective effects against chemotherapy-induced toxicity. It also emphasizes the potential of CGA as a pharmacological adjuvant in cancer treatment with drugs such as 5-fluorouracil, cisplatin, oxaliplatin, doxorubicin, regorafenib, and radiotherapy. By analyzing more than 140 papers from PubMed, Google Scholar, and SciFinder, we hope to find the therapeutic potential of CGA in improving cancer therapy.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
4
|
Owumi SE, Arunsi UO, Oyelere AK. The protective effect of 3-indolepropanoic acid on aflatoxin B1-induced systemic perturbation of the liver and kidney function in rats. Fundam Clin Pharmacol 2023; 37:369-384. [PMID: 36214208 DOI: 10.1111/fcp.12842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 02/25/2023]
Abstract
Aflatoxin B1 (AFB1) is known to derange the hepatorenal system by redox, DNA adduct formation and apoptotic networks. Endogenous 3-indole propionic acid (3-IPA) is a metabolite of tryptophan metabolism by gut microbiota that can protect against redox imbalance, inflammation and cellular lipid damage. We investigated the beneficial effect of 3-IPA against AFB1-mediated organ toxicity in male rats post 28 days of consecutive treatment. The 3-IPA (25 and 50 mg/kg) was orally administered alongside AFB1 (50 μg/kg) treatment. Biochemical and enzyme-linked immunosorbent assays were utilised to examine biomarkers of hepatorenal function, oxidative status and inflammation. DNA damage and apoptosis were also assessed, and histological staining techniques were used to investigate hepatorenal tissues for pathological indicators. The 3-IPA supplementation abated AFB1-mediated increases in biomarkers of hepatic and renal dysfunction in rat serum. Co-administration of 3-IPA further reduced AFB1-induced redox imbalance (by upregulating antioxidant mediators and enzymes [GSH, TSH, Trx, Trx-R, SOD, CAT, GPx and GST]; reducing reactive oxygen species, lipid peroxidation and DNA adduct [RONS, LPO and 8-OH-dG] formation; suppressing pro-inflammatory and apoptotic mediators [XO, MPO, NO, IL-1β and Casp -9 and -3]; and upregulating the level of interleukin 10 (IL-10). Moreover, treatment with 3-IPA lessened hepatorenal tissue injuries. These findings suggest that augmenting 3-IPA endogenously from tryptophan metabolism may provide a novel strategy to forestall xenobiotics-mediated hepatorenal toxicity, including AFB1.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
6
|
Abedpour N, Zeinali A, Karimipour M, Pourheidar B, Farjah GH, Abak A, Shoorei H. Protective effects of chlorogenic acid against ionizing radiation-induced testicular toxicity. Heliyon 2022; 8:e10798. [PMID: 36212000 PMCID: PMC9539785 DOI: 10.1016/j.heliyon.2022.e10798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Testicular tissues could damage by ionizing radiation (IR) during the treatment of pelvic cancers. The aim of this study was to investigate both the protective and therapeutic effects of chlorogenic acid (CGA) on IR-induced mouse testis tissue damage. Methods In this experimental study, 70 mice were divided into 3 groups, including group 1 (normal saline), group 2 (IR + normal saline), and group 3 (IR + 5, 10, 20, 40, and 80 mg/kg) CGA via I.P injection. Animals in groups 2 and 3 received a dose of 2.0 Gy total-body irradiation in a single fraction. At two determined time points (16 h and 35 days after exposure), the testis and caudal part of both epididymis were isolated and underwent subsequent analyses. Results The results showed that irradiation of mice caused massive damage to spermatogenesis, seminiferous tubules, basal lamina, Leydig cells, and sperm parameters. Further biochemical assessment of the data demonstrated that 40 mg/kg CGA almost restored MDA to a normal level. In addition, the level of SOD, TAC, and GSH were significantly increased in the 40 mg/kg CGA treated group. Molecular evidence confirmed the protective effects of CGA and also revealed that the ratio of Bax/Bcl-2 in the presence of 40 mg/kg CGA was significantly decreased compared to IR and some treated groups. Conclusion The protective and therapeutic effects of CGA on testis were found to be positively correlated with the dose level.
Collapse
Affiliation(s)
- Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
- Corresponding author.
| | - Ahad Zeinali
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Bagher Pourheidar
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Gholam Hossein Farjah
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Corresponding author.
| |
Collapse
|
7
|
Owumi SE, Arunsi UO, Oyewumi OM, Altayyar A. Accidental lead in contaminated pipe-borne water and dietary furan intake perturbs rats' hepatorenal function altering oxidative, inflammatory, and apoptotic balance. BMC Pharmacol Toxicol 2022; 23:76. [PMID: 36180958 PMCID: PMC9526313 DOI: 10.1186/s40360-022-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Inadvertent exposure to furan and Pb is associated with hepatorenal abnormalities in humans and animals. It is perceived that these two chemical species may work in synergy to orchestrate liver and kidney damage. Against this background, we investigated the combined effect of furan and incremental lead (Pb) exposure on hepatorenal dysfunction. Wistar rats (n = 30; 150 g) were treated for 28 days accordingly: Control; FUR (8 mg/kg), PbAc (100 µg/L), FUR + PbAc1 (8 mg/kg FUR + 1 µg/L PbAc); FUR + PbAc1 (8 mg/kg FUR + 10 µg/L PbAc), and FUR + PbAc1 (8 mg/kg FUR + 100 µg/L PbAc). Biomarkers of hepatorenal function, oxidative stress, inflammation, DNA damage, and apoptosis were examined. Furan and incrementally Pb exposure increased the levels of hepatorenal biomarkers and oxidative and pro-inflammatory mediators, including lipid peroxidation, reactive oxygen and nitrogen species, and interleukin-1 beta. Increased DNA damage, caspases- 9 and -3, and atypical histoarchitecture of the hepatorenal tissues exemplified furan and Pb treatment-related perturbations. Furthermore, the levels of antioxidants and IL-10 were also suppressed. Furan and Pb dose-dependently exacerbated hepatorenal derangements by altering the redox and inflammatory rheostats, worsened DNA damage, and related apoptotic onset that may potentiate hepatorenal disorders in humans and animals. The findings validate the synergistic effect of furan and Pb in the pathophysiology of kidney and liver disorders.
Collapse
Affiliation(s)
- Solomon E Owumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria.
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Omolola M Oyewumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria
| | - Ahmad Altayyar
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
8
|
Owumi SE, Arunsi UO, Otunla MT, Oluwasuji IO. Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats. J Biomed Res 2022; 37:100-114. [PMID: 36529973 PMCID: PMC10018412 DOI: 10.7555/jbr.36.20220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lead (Pb) and furan are toxic agents, and persistent exposure may impair human and animal reproductive function. We therefore explored the effects of Pb and furan on male rat hypothalamic-pituitary-gonadal reproductive status, oxidative stress, inflammation, and genomic integrity. We found that co-exposure to Pb and furan reduced the activities of testicular function enzymes, endogenous antioxidant levels, total sulfhydryl group, and glutathione. Sperm abnormality, biomarkers of oxidative stress, inflammation, and p53 expression were increased in a dose-dependent manner by treatment with furan and Pb. Typical rat gonad histoarchitecture features were also damaged. Conclusively, co-exposure to Pb and furan induced male reproductive function derangement by decreasing the antioxidant defences in rats, increasing abnormalities in spermatozoa morphology, and reducing reproductive hormone in circulation. These pathophysiological alterations, if persistent, might provide a permissive environment for potentiating reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State 200004, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State 200004, Nigeria
| | - Imisioluwa O Oluwasuji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State 200004, Nigeria
| |
Collapse
|
9
|
Bahmannia M, Azizzade M, Heydari S, Nasrollahzadeh J, Rabiei S, Naja F, Sheikhi Mobarakeh Z, Hejazi J, Hejazi E. Effects of decaffeinated green coffee extract supplementation on anthropometric indices, blood glucose, leptin, adiponectin and neuropeptide Y (NPY) in breast cancer survivors: a randomized clinical trial. Food Funct 2022; 13:10347-10356. [PMID: 36134465 DOI: 10.1039/d2fo00983h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective: This study aimed to evaluate the effects of decaffeinated green coffee extract (DGCE) supplementation on anthropometric indices, blood glucose, leptin, adiponectin, and neuropeptide Y (NPY) in breast cancer survivors with obesity. Method: A total of 44 breast cancer survivors with obesity aged between 18 and 70 years and with a mean body mass index (BMI) of 31.62 ± 4.97 kg m-2 participated in this double-blind randomized clinical trial. Eligible patients were randomized to the intervention (n = 22) and control (n = 22) groups. They received two 400 mg capsules of DGCE or two identical placebos daily for 12 weeks. Serum concentrations of leptin, adiponectin, NPY, fasting blood sugar, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were measured at the baseline and after completion of the intervention. Also, weight, waist circumference, fat percentage, muscle percentage, and visceral fat were measured. Results: There were no significant differences in terms of changes of anthropometric indices and concentrations of leptin, adiponectin, NPY, and blood sugar between the two studied groups. Conclusion: Supplementation with DGCE in breast cancer survivors with obesity had no significant effect on anthropometric indices and blood glucose, leptin, adiponectin, and NPY levels.
Collapse
Affiliation(s)
- Mahsa Bahmannia
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Azizzade
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Heydari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samira Rabiei
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farah Naja
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Zahra Sheikhi Mobarakeh
- Quality of life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Iran.
| | - Jalal Hejazi
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
11
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Mu H, Liu S, Tian S, Chen B, Liu Z, Fan Y, Liu Y, Ma W, Zhang W, Fu M, Song X. Study on the SHP2-Mediated Mechanism of Promoting Spermatogenesis Induced by Active Compounds of Eucommiae Folium in Mice. Front Pharmacol 2022; 13:851930. [PMID: 35392568 PMCID: PMC8981153 DOI: 10.3389/fphar.2022.851930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Spermatogenesis directly determines the reproductive capacity of male animals. With the development of society, the increasing pressure on people’s lives and changes in the living environment, male fertility is declining. The leaf of Eucommia ulmoides Oliv. (Eucommiae Folium, EF) was recorded in the 2020 Chinese Pharmacopoeia and was used in traditional Chinese medicine as a tonic. In recent years, EF has been reported to improve spermatogenesis, but the mechanisms of EF remain was poorly characterized. In this study, the effect of EF ethanol extract (EFEE) on spermatogenesis was tested in mice. Chemical components related to spermatogenesis in EF were predicted by network pharmacology. The biological activity of the predicted chemical components was measured by the proliferation of C18-4 spermatogonial stem cells (SSCs) and the testosterone secretion of TM3 leydig cells. The biological activity of chlorogenic acid (CGA), the active compound in EF, was tested in vivo. The cell cycle was analysed by flow cytometry. Testosterone secretion was detected by ELISA. RNA interference (RNAi) was used to detect the effect of key genes on cell biological activity. Western blotting, qRT–PCR and immunofluorescence staining were used to analyse the molecular mechanism of related biological activities. The results showed that EFEE and CGA could improve spermatogenesis in mice. Furthermore, the main mechanism was that CGA promoted SSC proliferation, self-renewal and Leydig cell testosterone secretion by promoting the expression of SHP2 and activating the downstream signaling pathways involved in these biological processes. This study provided strong evidence for elucidating the mechanism by which EF promotes the spermatogenesis in mice and a new theoretical basis for dealing with the decrease in male reproductive capacity.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuangshi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiyang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Cellat M, İşler CT, Uyar A, Kuzu M, Aydın T, Etyemez M, Türk E, Yavas I, Güvenç M. Protective effect of
Smilax excelsa
L. pretreatment via antioxidant, anti‐inflammatory effects, and activation of Nrf‐2/
HO
‐1 pathway in testicular torsion model. J Food Biochem 2022; 46:e14161. [DOI: 10.1111/jfbc.14161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Türkiye
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Türkiye
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Faculty of Health Sciences Karabuk University Karabuk Türkiye
| | - Tuba Aydın
- Department of Pharmacognosy, Faculty of Pharmacy Agri İbrahim Cecen University Agri Türkiye
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Türkiye
| | - Erdinç Türk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Türkiye
| | - Ilker Yavas
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Türkiye
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Türkiye
| |
Collapse
|
14
|
Owumi SE, Irozuru CE, Arunsi UO, Faleke HO, Oyelere AK. Caffeic acid mitigates aflatoxin B1-mediated toxicity in the male rat reproductive system by modulating inflammatory and apoptotic responses, testicular function, and the redox-regulatory systems. J Food Biochem 2022; 46:e14090. [PMID: 35112365 DOI: 10.1111/jfbc.14090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Aflatoxin B1 (AFB1 ) is a toxic metabolite of public health concern. The present study investigates the protective effects of caffeic acid (CA) against AFB1 -induced oxidative stress, inflammation, and apoptosis in the hypothalamus, epididymis, and testis of male rats. Five experimental rat cohorts (n = 6) were treated per os for 28 consecutive days as follows: Control (Corn oil 2 ml/kg body weight), AFB1 alone (50μg/kg), CA alone (40 mg/kg) and the co-treated rat cohorts (AFB1 : 50μg/kg + CA1: 20 or 40 mg/kg). Following sacrifice, the biomarkers of hypothalamic, epididymal, and testicular toxicities, antioxidant enzyme activities, myeloperoxidase (MPO) activity, as well as levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Besides, the concentration of tumour necrosis factor-alpha (TNF-α), Bcl-2 and Bax proteins were assessed using ELISA. Results showed that the AFB1 -induced decrease in biomarkers of testicular, epididymal and hypothalamic toxicity was significantly (p < .05) alleviated in rats coexposed to CA. Moreover, the reduction of antioxidant status and the increase in RONS and LPO were lessened (p < .05) in rats co-treated with CA. AFB1 mediated increase in TNF-α, Bax, NO and MPO activity were reduced (p< .05) in the hypothalamus, epididymis, and testis of rats coexposed to CA. In addition, Bcl-2 levels were reduced in rats treated with CA dose-dependently. Light microscopic examination showed that histopathological lesions severity induced by AFB1 were alleviated in rats coexposed to CA. Taken together, the amelioration of AFB1 -induced neuronal and reproductive toxicities by CA involves anti-inflammatory, antioxidant, antiapoptotic mechanisms in rats. PRACTICAL APPLICATIONS: The beneficial antioxidant effects of caffeic acid (CA) are attributed to CA delocalized aromatic rings and free electrons, easily donated to stabilize reactive oxygen species. We report in vivo findings on CA and AfB1 mediated oxidative stress and reproductive dysfunction in rats. CA conjugated esters including chlorogenic acids are widely distributed in plants, and they act as a dietary source of natural defense against infections. CA can chelate heavy metals and reduce production of damaging free radicals to cellular macromolecules. Along these lines, CA can stabilize aflatoxin B1-epoxide as well and avert deleterious conjugates from forming with deoxyribonucleic acids. Hence CA, as a dietary phytochemical can protect against the damaging effects of toxins including aflatoxin B1 that contaminate food. CA dose-dependently abated oxidative, inflammatory, and apoptotic stimuli, improved functional characteristics of spermatozoa and reproductive hormone levels, and prevented histological alterations in experimental rats' hypothalamus and reproductive organs brought about by AFB1 toxicity.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Chioma E Irozuru
- Molecular Drug Metabolism Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hammed O Faleke
- Membrane Biochemistry and Biotechnology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Owumi SE, Arunsi UO, Otunla MT, Oluwasuji IO. Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats. J Biomed Res 2022. [DOI: 10.7555/jbr.36.20220108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
16
|
Imosemi IO, Owumi SE, Arunsi UO. Biochemical and histological alterations of doxorubicin-induced neurotoxicity in rats: Protective role of luteolin. J Biochem Mol Toxicol 2021; 36:e22962. [PMID: 34766659 DOI: 10.1002/jbt.22962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug used in the treatment of various cancer types. DOX toxic side effects include neuronopathy and memory deficits. We investigated the effect of the antioxidant luteolin (LUT: 50 or 100 mg/kg; per os) on DOX (2 mg/kg; intraperitoneal)-induced oxidative stress (OS), inflammation, and apoptosis in the brain of Wistar rats for 14 days. We observed that LUT reduced DOX-mediated increase in OS biomarkers-catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase. LUT increased glutathione and total sulphydryl levels and alleviated DOX-induced increases in the levels of reactive oxygen and nitrogen species, lipid peroxidation, myeloperoxidase, nitric oxide, tumor necrosis factor-α, and interleukin-1β (IL-1β). Additionally, LUT suppressed caspase-3 activity, increased anti-inflammatory cytokine-IL-10 level, and reduced pathological lesions in the examined organs of rats cotreated with LUT and DOX. Collectively, cotreatment with LUT lessened DOX-induced neurotoxicity. Supplementation of LUT as a chemopreventive agent might be useful in patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- CRMB Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Owumi SE, Otunla MT, Arunsi UO, Najophe ES. 3-Indolepropionic acid upturned male reproductive function by reducing oxido-inflammatory responses and apoptosis along the hypothalamic-pituitary-gonadal axis of adult rats exposed to chlorpyrifos. Toxicology 2021; 463:152996. [PMID: 34678318 DOI: 10.1016/j.tox.2021.152996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
We examined the effect of 3-Indolepropionic acid (3-IPA), an antioxidant on the organophosphorus pesticide chlorpyrifos (CPF)-induced reproductive toxicity in rats. The five experimental rat cohorts were treated per os for 14 consecutive days as follows: Control (Corn oil 2 mL/kg body weight), CPF alone (5 mg/kg), 3-IPA alone (40 mg/kg) and the co-treated rat cohorts (CPF:5 mg/kg + 3-IPA: 20 or 40 mg/kg). Biomarkers of testicular and epididymal function, oxidative stress, myeloperoxidase (MPO) activity and the levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were assessed. Also, tumour necrosis factor-alpha (TNF-α), Bcl-2-associated X (Bax) and B cell lymphoma 2 (Bcl-2) proteins were estimated, and tissue histology was microscopically examined. CPF alone significantly (p < 0.05) increased biomarkers of reproductive toxicities were averted in rats co-treated 3-IPA. Decreases in antioxidants and increases in lipid peroxidation and reactive oxygen and nitrogen species were lessened (p < 0.05) in CPF and 3-IPA co-treated rats. CPF mediated increases in TNF-α, NO, Bax, and MPO activity was reduced (p < 0.05) in the epididymis, testes, and hypothalamus of rats co-treated with 3-IPA. In addition, Bcl-2 expression was increased in rats co-treated with 3-IPA dose-dependently. Histopathological examination revealed severe lesions induced by CPF were prevented in rats co-treated with 3-IPA. Our findings demonstrate that exogenous 3-IPA reduced CPF-induced oxidative stress, inflammation, and apoptosis in the epididymis and testes of male rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria.
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Eseroghene S Najophe
- Nutritional and Industrial Biochemistry Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria
| |
Collapse
|
18
|
Owumi SE, Otunla MT, Najophe ES, Oyelere AK. Decrease in reproductive dysfunction using aflatoxin B1 exposure: a treatment with 3-indolepropionic acid in albino Wistar rat. Andrologia 2021; 54:e14248. [PMID: 34541692 DOI: 10.1111/and.14248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
We assessed the individual and combined consequence of 3-indolepropionic acid on aflatoxin B1-induced reproductive toxicity in rats. The experimental cohorts were dosed for four consecutive weeks with aflatoxin B1 (50 μg/kg), 3-indolepropionic acid (50 mg/kg), and both (aflatoxin B1: 50 μg/kg + 3-indolepropionic acid: 25 or 50 mg/kg), and the untreated control. Following sacrifice, biomarkers of testicular, epididymal and hypothalamic oxidative status, lipid peroxidation, reactive oxygen and nitrogen species, nitric oxide levels and myeloperoxidase activity were determined. Besides, tumour necrosis factor-alpha, Bcl-2 and Bax proteins were also assessed. Aflatoxin B1-induced testicular, epididymal and hypothalamic oxidative stress was significantly alleviated with 3-indolepropionic acid co-treatment. Also, increases in biomarkers of oxidative stress and reduced levels of antioxidants were abated significantly in rats co-treated with 3-indolepropionic acid. Aflatoxin B1-mediated increase in tumour necrosis factor-alpha, Bax, nitric oxide and myeloperoxidase activity in the examined organs was decreased significantly in aflatoxin B1 and 3-indolepropionic acid co-treated rats. Also, 3-indolepropionic acid dose dependently reduced Bcl-2 levels in the treated rats. The degree of aflatoxin B1-induced histopathological injuries was minimised in rats co-treated with 3-indolepropionic acid. Our results demonstrated that 3-indolepropionic acid protected experimental rats from aflatoxin B1-induced oxido-inflammatory stress and apoptotic response in the examined organs.
Collapse
Affiliation(s)
- Solomon Eduviere Owumi
- Change-Laboratory, Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Moses Temitayo Otunla
- Change-Laboratory, Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Eseroghene Sarah Najophe
- Nutritional and Industrial Biochemistry Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega Kazeem Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Owumi SE, Oladimeji BN, Elebiyo TC, Arunsi UO. Combine effect of exposure to petrol, kerosene and diesel fumes: On hepatic oxidative stress and haematological function in rats. Toxicol Ind Health 2021; 37:336-352. [PMID: 33949275 DOI: 10.1177/07482337211012498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Petroleum product fumes (PPFs) containing toxic organic components are pervasive in the environment, emanating from anthropogenic activities, including petroleum exploration and utilization by end-user activities from petrol-gasoline stations. Petrol station attendants are exposed to PPF through inhalation and dermal contact with consequent toxicological implications. We investigated the effects of chronic exposure (60 and 90 days) to petrol (P), kerosene (K) and diesel (D) alone and combined exposure to petrol, kerosene and diesel (PKD) fumes on hepatotoxicity, haematological function and oxidative stress in rats. Following sacrifice, we evaluated hepatic damage biomarkers, blood glucose, oxidative stress and haematological function. Chronic exposure to PPF significantly increased organo-somatic indices, blood glucose, biomarkers of hepatic toxicity and oxidative stress in an exposure duration-dependent manner. There was a simultaneous decrease in the protective capacity of antioxidants. Furthermore, exposure to PPF increased pro-inflammatory biomarkers in rats (90 > 60 days). Regardless of exposure duration, plateletcrit, mean platelet volume, platelet distribution width and red cell distribution width in the coefficient of variation increased, whereas red blood cell count, haemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, white blood cell, lymphocyte, monocyte-basophil-eosinophil mixed counts and platelet count decreased after 60 and 90 days exposure. Microscopic examination of the liver demonstrated hepatic pathological changes paralleling the duration of exposure to PKD fumes. However, the injury observed was lesser to that of rats treated with the diethylnitrosamine - positive control. Our results expanded previous findings and further demonstrated the probable adverse effect on populations' health occasioned by persistent exposure to PPF. Individuals chronically exposed by occupation to PPF may be at greater risk of developing disorders promoted by continuous oxido-inflammatory perturbation and suboptimal haematological-immunologic function - thereby enabling a permissive environment for pathogenesis notwithstanding the limitation of quantifying PPF absolute values in our model system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bidemi N Oladimeji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tobiloba C Elebiyo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
20
|
Owumi SE, Akomolafe AP, Imosemi IO, Odunola OA, Oyelere AK. N-acetyl cysteine co-treatment abates perfluorooctanoic acid-induced reproductive toxicity in male rats. Andrologia 2021; 53:e14037. [PMID: 33724529 DOI: 10.1111/and.14037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Perfluorooctanoic acid is a synthetic perfluoroalkyl-persistent in the environment and toxic to humans. N-acetylcysteine is a pro-drug of both amino acid l-cysteine and glutathione-a non-enzymatic antioxidant. N-acetylcysteine serves as an antidote for paracetamol poisoning and alleviates cellular oxidative and inflammatory stressors. We investigated N-acetylcysteine role against reproductive toxicity in male Wistar rats (weight: 140-220 g; 10 weeks old) posed by perfluorooctanoic acid exposure. Randomised rat cohorts were dosed both with perfluorooctanoic acid (5 mg/kg; p.o) or co-dosed with N-acetylcysteine (25 and 50 mg/kg p.o) for 28 days. Sperm physiognomies, biomarkers of testicular function and reproductive hormones, oxidative stress and inflammation were evaluated. Co-treatment with N-acetylcysteine significantly (p < .05) reversed perfluorooctanoic acid-mediated decreases in reproductive enzyme activities, and adverse effect on testosterone, luteinising and follicle-stimulating hormone concentrations. N-acetylcysteine treatment alone, improved sperm motility, count and viability, and reduced total sperm abnormalities. Co-treatment with N-acetylcysteine mitigated perfluorooctanoic acid-induced alterations in sperm function parameters. N-acetylcysteine abated (p < .05) perfluorooctanoic acid-induced oxidative stress in experimental rats testes and epididymis, and generally improved antioxidant enzyme activities and cellular thiol levels. Furthermore, N-acetylcysteine suppressed inflammatory responses and remedied perfluorooctanoic acid-mediated histological injuries in rat. Cooperatively, N-acetylcysteine enhanced reproductive function in perfluorooctanoic acid dosed rats, by lessening oxidative and nitrative stressors and mitigated inflammatory responses in the examined organ.
Collapse
Affiliation(s)
- Solomon E Owumi
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayomide P Akomolafe
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
21
|
Owumi SE, Bello SA, Idowu TB, Arunsi UO, Oyelere AK. Protocatechuic acid protects against hepatorenal toxicities in rats exposed to Furan. Drug Chem Toxicol 2021; 45:1840-1850. [PMID: 33645375 DOI: 10.1080/01480545.2021.1890109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Furan formed in processed food is hepatotoxic and likely carcinogenic in humans. We investigated protocatechuic acid (PCA) protective role in rats' hepatorenal function treated with furan. Rats were grouped and treated as follows: Control, PCA (50 mg/kg), furan alone (8 mg/kg), furan + PCA1 (25 + 8 mg/kg), and furan + PCA2 (50 + 8 mg/kg). Upon sacrifice, evaluation of hepatorenal function, oxidative stress status, reactive oxygen and nitrogen species (RONS), lipid peroxidation (LPO), myeloperoxidase (MPO) activity, among nitric oxide (NO) levels were performed. Cytokine levels (IL-10, IL-1ß, TNF-alpha), Caspase 3 and 9 activities, and histopathological examination were also assessed. We found that the final body and relative liver weights changed significantly (p < 0.05) in treated groups. Hepatic transaminases, urea, and creatinine increased (p < 0.05) in furan only treated group, and reduced in PCA co-treated groups. The furan-induced decrease in antioxidant status increased RONS, and LPO levels were alleviated (p < 0.05) by PCA co-treatment. Furthermore, furan-mediated increase in NO, IL-1ß, TNF-alpha levels, MPO, Cas-3, and 9 activities and suppressed IL-10 levels was reversed accordingly in rats' kidney and liver co-treated with PCA. The extent of furan-mediated hepatorenal lesions was lessened in PCA co-treated rats. Our findings suggest that PCA protects against oxido-inflammatory pathways, enhanced caspases 3 and 9 activations induced by furan in rat hepatorenal system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Samuel A Bello
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Temitope B Idowu
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|