1
|
Olas B. Pro-Health Potential of Fruit Vinegars and Oxymels in Various Experimental Models. Int J Mol Sci 2024; 26:7. [PMID: 39795866 PMCID: PMC11720349 DOI: 10.3390/ijms26010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Fruits are excellent sources of substrate for various fermented products, including fruit vinegars, which are typically produced by submerged fermentation. Some evidence suggests that fruit vinegar consumption can alleviate certain disorders, including hyperlipidemia, inflammation, and hyperglycemia. Fruit vinegars also have bacteriostatic and antihypertensive actions. Recent studies also suggest that apple vinegar may offer benefits in treating insulin resistance, osteoporosis, and certain neurological diseases such as Alzheimer's disease; it may also support weight loss. Recent studies in animal and human models have considerably broadened our understanding of the biological properties of not only fruit vinegars but also oxymels, i.e., mixtures of vinegar and honey or sugar. This paper reviews the current state of knowledge regarding vinegars and oxymels, with a special emphasis on their chemical composition and the mechanisms behind their biological activity and pro-health potential. The multidirectional effects of fruit vinegars and oxymels result from the synergy of different chemical compounds, including organic acids (mainly acetic acid), phenolic compounds, vitamins, minerals, and fermentation products. However, more studies are needed to understand the interactions between all the different components, not only the phenolic compounds and organic acids. In addition, more research is needed on their mechanisms of action. Although no serious side effects have been noted to date, further studies with large sample sizes are needed to understand the possible side effects of long-term fruit vinegar and oxymel use.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Yuan YH, Mu DD, Guo L, Wu XF, Chen XS, Li XJ. From flavor to function: A review of fermented fruit drinks, their microbial profiles and health benefits. Food Res Int 2024; 196:115095. [PMID: 39614507 DOI: 10.1016/j.foodres.2024.115095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Fermented fruit drinks (FFDs) are gaining popularity among consumers for their unique flavors and potential health benefits. This review provides a systematic assessment of the flavor components in FFDs and explores the metabolic pathways for their formation. We examine the interactions between the structure of microbial communities and the development of these flavor components, highlighting the role of microorganisms in shaping the unique taste of FFDs. Additionally, we discuss the potential health benefits associated with FFDs, focusing on their relationship with microbial communities as supported by existing literature. The review also addresses future prospects and challenges in the field. Our findings indicate key fermenting microorganisms, such as lactic acid bacteria, yeast and acetic acid bacteria, are responsible for producing the distinctive flavor components in FFDs, including alcohols, ketones, aldehydes, esters, and fatty acids. These microorganisms also generate organic acids, amino acids, and carbohydrates, contributing to the drink's complex taste. Furthermore, this fermentation process enhances the bioactivity of FFDs, offering potential health benefits like antioxidant, anti-obesity, anti-diabetic, and anti-cancer properties. These insights are crucial for advancing fermentation technology and developing guidelines for producing nutrient-rich, flavorful FFDs.
Collapse
Affiliation(s)
- Yu-Han Yuan
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Dong-Dong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
| | - Xue-Feng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xiang-Song Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
3
|
da Silva Monteiro Wanderley BR, de Lima ND, Deolindo CTP, Ansiliero R, Kempka AP, Moroni LS, Louredo FJC, Gonzaga LV, Costa ACO, Amboni RDDMC, de Sena Aquino ACM, Fritzen-Freire CB. Orange passion fruit (Passiflora caerulea L.) as a new raw material for acetic fermentation: evaluation of organic acids and phenolic profile, in vitro digestion, and biological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8275-8289. [PMID: 38877535 DOI: 10.1002/jsfa.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND This study evaluated for the first time the potential of orange passion fruit as a base for alcoholic and acetic fermentations, with a view to assessing its profile of organic acids and polyphenols, in vitro digestion, and biological activities. RESULTS In terms of aliphatic organic acids, malic acid was the majority in the wine (3.19 g L-1), while in the vinegar, it was acetic acid (46.84 g L-1). 3,4-Dihydroxybenzoic acid (3,4-DHB) was the major phenolic compound in the wine and vinegar samples (3443.93 and 2980.00 μg L-1, respectively). After the in vitro gastrointestinal simulation stage, the wine showed high bioaccessibility for the compounds sinipaldehyde (82.97%) and 2,4-dihydroxybenzoic acid (2,4-DHBA, 81.27%), while the vinegar exhibited high bioaccessibility for sinipaldehyde (89.39%). Through multivariate analysis, it was observed that 3,4-DHB was highly concentrated in the different digested fractions obtained from the wine. In contrast, in the vinegar, the stability of isorahmenetin and Quercetin 3-o-rhamnoside was observed during the in vitro digestion simulation. Lastly, the vinegar stood out for its inhibition rates of α-amylase (23.93%), α-glucoside (18.34%), and angiotensin-converting enzyme (10.92%). In addition, the vinegar had an inhibitory effect on the pathogenic microorganisms Salmonella enteritidis, Escherichia coli, and Listeria monocytogenes. CONCLUSION Orange passion fruit has proved to be a promising raw material for the development of fermented beverages. Therefore, this study provides an unprecedented perspective on the use and valorization of orange passion fruit, contributing significantly to the advancement of knowledge about fermented products and the associated nutritional and functional possibilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Natália Duarte de Lima
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | - Rafaela Ansiliero
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| | - Aniela Pinto Kempka
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| | - Liziane Schittler Moroni
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | | | | |
Collapse
|
4
|
Prieto-Santiago V, Aguiló-Aguayo I, Ortiz-Solà J, Anguera M, Abadias M. Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice. Foods 2024; 13:350. [PMID: 38275717 PMCID: PMC10814886 DOI: 10.3390/foods13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Due to recent interest in the potential of probiotics as health promoters and the impact of health and environmental concerns on eating habits, non-dairy probiotic food products are required. This study aimed to evaluate the viability of different probiotic microorganisms in peach and grape juice (PGJ) with or without the prebiotic inulin and their antimicrobial activity against the foodborne pathogen Listeria monocytogenes and the juice spoilage microorganism Saccharomyces cerevisiae. Firstly, the viability of seven probiotic strains was studied in PGJ with an initial concentration of 107 CFU/mL for 21 days at 4 °C and for 3 days at 37 °C. In parallel, the physicochemical effect, the antimicrobial effect and the lactic acid production in PGJ were evaluated. Secondly, the probiotic with the best viability results was selected to study its antimicrobial effect against L. monocytogenes and S. cerevisiae, as well as ethanol and acetaldehyde production by the latter. L. casei showed the highest viability and grew in both refrigerated and fermentation conditions (1 log), produced the greatest lactic acid (5.12 g/L) and demonstrated in vitro anti-Listeria activity. Although the addition of the prebiotic did not improve the viability, lactic acid production or anti-Listeria activity of the probiotics, under the conditions studied, the prebiotic potential of inulin, support the design of a synbiotic juice. Finally, although none of the probiotic, fermentation products, or postbiotics showed any antimicrobial activity against L. monocytogenes or S. cerevisiae, the addition of L. casei to the PGJ significantly reduced the production of S. cerevisiae metabolite ethanol (29%) and acetaldehyde (50%). L. casei might be a suitable probiotic to deliver a safe and functional PGJ, although further research should be carried out to determine the effect of the probiotic and fermentation on the nutritional profile of PGJ.
Collapse
Affiliation(s)
| | | | | | | | - Maribel Abadias
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.); (J.O.-S.); (M.A.)
| |
Collapse
|
5
|
Changes in Fruit Quality Phytochemicals of Late-Mature Peach ‘Yonglian No.1’ during Storage. Molecules 2022; 27:molecules27196319. [PMID: 36234856 PMCID: PMC9572855 DOI: 10.3390/molecules27196319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, the changes in quality parameters and sensory-influencing parameters from the peel, red flesh, and white flesh of ‘Yonglian No.1’ peach fruits were analyzed during cold storage. The results indicated that the contents of total soluble solids (TSS), soluble sugar, organic acid, vitamin C, total anthocyanin, phenol, and flavonoids, as well as the good fruit rate varied depending on the storage stages and storage treatments. The peach fruits in MAP stored for 50 days had favorable exterior qualities, a good fruit rate of 100%, and a higher content of total soluble solids (TSS) at 12.6%. MAP was significantly effective at maintaining fruit firmness, the content of TSS, soluble sugar, organic acid, vitamin C, total anthocyanin, phenol, and flavonoids. Among the derivatives of anthocyanin, both cyanidin and pelargonidin were found in the peel, with a content of 33.45 mg/kg FW and 1.82 mg/kg FW, respectively. However, cyanidin was detected in the flesh with a content of 40.42 mg/kg FW. In the present work, the differences regarding phytochemical profiles and physical properties were mainly correlated with the storage stages and storage treatments of peach fruit. ‘Yonglian No.1’ had higher levels of health-promoting compounds during storage and maintained favorable quality.
Collapse
|
6
|
Sun P, Xu B, Wang Y, Lin X, Chen C, Zhu J, Jia H, Wang X, Shen J, Feng T. Characterization of volatile constituents and odorous compounds in peach ( Prunus persica L) fruits of different varieties by gas chromatography-ion mobility spectrometry, gas chromatography-mass spectrometry, and relative odor activity value. Front Nutr 2022; 9:965796. [PMID: 36046134 PMCID: PMC9421302 DOI: 10.3389/fnut.2022.965796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study is to acquire information for future breeding efforts aimed at improving fruit quality via effects on aroma by comparing the diversity of Chinese local peach cultivars across 10 samples of three varieties (honey peach, yellow peach, and flat peach). The volatile components of peach fruits were analyzed and identified by gas chromatography–ion mobility spectrometry (GC-IMS) combined with gas chromatography–mass spectrometry (GC-MS), and the main flavor components of peach fruit were determined by relative odor activity value (ROAV) and principal component analysis (PCA). A total number of 57 volatile components were detected by GC-IMS, including eight aldehydes, nine alcohols, eight ketones, 22 esters, two acids, two phenols, two pyrazines, one thiophene, one benzene, and two furans. The proportion of esters was up to 38.6%. A total of 88 volatile components were detected by GC-MS, among which 40 were key aroma compounds, with an ROAV ≥ 1. The analysis results showed that alcohols, ketones, esters, and aldehydes contributed the most to the aroma of peach fruit. PCA demonstrated that (E,E)-2, 6-non-adienal, γ-decalactone, β-ionone, and hexyl hexanoate were the key contributors to the fruit aroma. A reference for future directional cultivation and breeding could be provided by this study through evaluating the aroma quality of the peach at the cultivar level. The possible reasonable application of these peach fruits pulp will be guided through these research.
Collapse
Affiliation(s)
- Ping Sun
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Bing Xu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yi Wang
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xianrui Lin
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chenfei Chen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jianxi Zhu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huijuan Jia
- The College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiansheng Shen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tao Feng
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
7
|
Wang AH, Ma HY, Zhang BH, Mo CY, Li EH, Li F. Transcriptomic and Metabolomic Analyses Provide Insights into the Formation of the Peach-like Aroma of Fragaria nilgerrensis Schlecht. Fruits. Genes (Basel) 2022; 13:genes13071285. [PMID: 35886068 PMCID: PMC9318527 DOI: 10.3390/genes13071285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023] Open
Abstract
Fragaria nilgerrensis Schlecht. is a wild diploid strawberry species. The intense peach-like aroma of its fruits makes F. nilgerrensis an excellent resource for strawberry breeding programs aimed at enhancing flavors. However, the formation of the peach-like aroma of strawberry fruits has not been comprehensively characterized. In this study, fruit metabolome and transcriptome datasets for F. nilgerrensis (HA; peach-like aroma) and its interspecific hybrids PA (peach-like aroma) and NA (no peach-like aroma; control) were compared. In total, 150 differentially accumulated metabolites were detected. The K-means analysis revealed that esters/lactones, including acetic acid, octyl ester, δ-octalactone, and δ-decalactone, were more abundant in HA and PA than in NA. These metabolites may be important for the formation of the peach-like aroma of F. nilgerrensis fruits. The significantly enriched gene ontology terms assigned to the differentially expressed genes (DEGs) were fatty acid metabolic process and fatty acid biosynthetic process. Twenty-seven DEGs were predicted to be associated with ester and lactone biosynthesis, including AAT, LOX, AOS, FAD, AIM1, EH, FAH, ADH, and cytochrome P450 subfamily genes. Thirty-five transcription factor genes were predicted to be associated with aroma formation, including bHLH, MYB, bZIP, NAC, AP2, GATA, and TCPfamily members. Moreover, we identified differentially expressed FAD, AOS, and cytochrome P450 family genes and NAC, MYB, and AP2 transcription factor genes that were correlated with δ-octalactone and δ-decalactone. These findings provide key insights into the formation of the peach-like aroma of F. nilgerrensis fruits, with implications for the increased use of wild strawberry resources.
Collapse
Affiliation(s)
- Ai-Hua Wang
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
- College of Biological and Food Engineering, Suzhou University, Suzhou 234099, China
| | - Hong-Ye Ma
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
| | - Bao-Hui Zhang
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
| | - Chuan-Yuan Mo
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
| | - En-Hong Li
- Guizhou Seed Management Station, Guiyang 550001, China;
| | - Fei Li
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
- Correspondence: author:
| |
Collapse
|
8
|
Xu X, Miao Y, Wang H, Ye P, Li T, Li C, Zhao R, Wang B, Shi X. A Snapshot of Microbial Succession and Volatile Compound Dynamics in Flat Peach Wine During Spontaneous Fermentation. Front Microbiol 2022; 13:919047. [PMID: 35847119 PMCID: PMC9277550 DOI: 10.3389/fmicb.2022.919047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Flat peaches possess characteristic flavors and are rich in nutrients. The fermentation of flat peaches to produce wine through complex biochemical reactions is an effective method to overcome their seasonal defects. Spontaneously fermented flat peach wine has plentiful and strong flavors, but the microbiota of fermentation are still unknown. In this study, the microbial succession and volatile compound dynamics of spontaneous fermentation in Xinjiang flat peach wine were investigated using high-throughput sequencing (HTS) and headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) technology, respectively, to better understand the microbiota involved. Multivariate data analysis was used to predict the relationship between microorganisms and volatile chemicals. The results showed that Kazachstania, Pichia, Aspergillus, Fructobacillus, Leuconostoc, and Lactobacillus were the dominant genera during the spontaneous fermentation of flat peach wine. Furthermore, ethyl hexanoate, 3-hexen-1-yl acetate, ethyl caprate, ethyl caprylate, phenethyl acetate, ethanol, γ-decalactone, decanal, 1-hexanoic acid, and octanoic acid endued flat peach wine with a strong fruity and fatty aroma. The core functional microbiota (primarily consisting of 11 bacterial and 14 fungal taxa) was strongly associated with the production of 27 volatile compounds in the spontaneously fermented flat peach wine, according to multivariate data analysis. Some alcohols and esters were positively linked with the presence of Kazachstania and Pichia. Meanwhile, the presence of Fructobacillus, Leuconostoc, Lactobacillus, and Weissella was significantly correlated with 2-non-anol, ethanol, 3-methyl-1-butanol, octyl formate, isoamyl lactate, and ethyl lactate. This snapshot of microbial succession and volatile compound dynamics provides insights into the microorganisms involved in flat peach wine fermentation and could guide the production of flat peach wine with desirable characteristics.
Collapse
|