1
|
Cui P, Liang J, Cheng T, Zhang J. Preparation of Calcium-Binding Peptides Derived from Mackerel ( Scomber japonicus) Protein and Structural Characterization and Stability Analysis of Its Calcium Complexes. Foods 2024; 13:1652. [PMID: 38890881 PMCID: PMC11171527 DOI: 10.3390/foods13111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The purpose of this study was to prepare mackerel peptides (MPs) with calcium-binding capacity through an enzyme method and to investigate the potential role they play in improving the bioavailability of calcium in vitro. The calcium-binding capacity, degree of hydrolysis (DH), molecular weight (MW), and charge distribution changes with the enzymolysis time of MPs were measured. The structural characterization of mackerel peptide-calcium (MP-calcium) complexes was performed using spectroscopy and morphology analysis. The results showed that the maximum calcium-binding capacity of the obtained MPs was 120.95 mg/g when alcalase was used for 3 h, with a DH of 15.45%. Moreover, with an increase in hydrolysis time, the MW of the MPs decreased, and the negative charge increased. The carboxyl and amino groups in aspartic (Asp) and glutamate (Glu) of the MPs may act as calcium-binding sites, which are further assembled into compact nanoscale spherical complexes with calcium ions through intermolecular interactions. Furthermore, even under the influence of oxalic acid, MP-calcium complexes maintained a certain solubility. This study provides a basis for developing new calcium supplements and efficiently utilizing the mackerel protein resource.
Collapse
Affiliation(s)
- Pengbo Cui
- Zhejiang Key Laboratory of Green, Low-Carbon and Efficient Development of Marine Fishery Resources, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (J.L.); (T.C.); (J.Z.)
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jianqin Liang
- Zhejiang Key Laboratory of Green, Low-Carbon and Efficient Development of Marine Fishery Resources, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (J.L.); (T.C.); (J.Z.)
| | - Tianyu Cheng
- Zhejiang Key Laboratory of Green, Low-Carbon and Efficient Development of Marine Fishery Resources, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (J.L.); (T.C.); (J.Z.)
| | - Jianyou Zhang
- Zhejiang Key Laboratory of Green, Low-Carbon and Efficient Development of Marine Fishery Resources, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (J.L.); (T.C.); (J.Z.)
| |
Collapse
|
2
|
de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. The degradation of chicken feathers by Ochrobactrum intermedium results in antioxidant and metal chelating hydrolysates and proteolytic enzymes for staphylococcal biofilm dispersion. 3 Biotech 2023; 13:202. [PMID: 37220603 PMCID: PMC10199982 DOI: 10.1007/s13205-023-03619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
The increase in the generation of chicken feathers, due to the large production of the poultry industry, has created the need to search for ecologically safer ways to manage these residues. As a sustainable alternative for recycling keratin waste, we investigated the ability of the bacterium Ochrobactrum intermedium to hydrolyze chicken feathers and the valorization of the resulting enzymes and protein hydrolysate. In submerged fermentation with three different inoculum sizes (2.5, 5.0, and 10.0 mg of bacterial cells per 50 mL of medium), the fastest degradation of feathers was achieved with 5.0 mg cells, in which a complete decomposition of the substrate (96 h) and earlier peaks of keratinolytic and caseinolytic activities were detected. In the resulting protein hydrolysate, we noticed antioxidant and Fe2+ and Cu2+ chelating activities. ABTS scavenging, Fe3+-reducing ability and metal chelating activities of the fermentative samples followed the same trend of feather degradation; as feather mass decreased in the media, these activities increased. Furthermore, we noticed about 47% and 60% dispersion of established 7-day biofilms formed by S. aureus after enzymatic treatment for 5 h and 24 h, respectively. These findings highlight the potential use of this bacterium as an environmentally friendly alternative to treat this poultry waste and offer valuable products.
Collapse
Affiliation(s)
- Cíntia Lionela Ambrosio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| |
Collapse
|
3
|
Hossen MM, Uddin MN, Islam Khan MS, Islam SH, Hasanuzzaman M, Bithi UH, Abu Tareq M, Hassan MN, Sayeed A, Robbani RB, Mitra K. Nutritional and in vitro antioxidant activity analyses of formulated soymilk dessert. Heliyon 2022; 8:e11267. [PMID: 36339995 PMCID: PMC9634019 DOI: 10.1016/j.heliyon.2022.e11267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Soymilk (SM) is nutritionally nearly equal to milk from cows and is free of cholesterol, gluten, and lactose. This study's objective was to formulate a cholesterol-free soymilk dessert (SOD) and compare it's to commercial desserts (CODs). Results indicated that the CODs contain substantial amounts of cholesterol while SOD does not. Soymilk dessert has more protein, and vitamin E than CODs, but less fat and calcium. In addition, the result also highlighted that SOD has higher number of amino acids compared to CODs. The total antioxidant, flavonoids and phenolics content of SOD were significantly higher than CODs. Furthermore, the in vitro antioxidant activity of SOD and CODs by DPPH and ABTS methods revealed that the IC50 of SODs significantly (p < 0.001) lower than CODs, and lower IC50 indicated the higher free radical scavenging power of SODs than CODs. These findings indicated that this non-dairy SOD may provide beneficial protein, as well as minerals, and antioxidants to support the body's various physiological functions.
Collapse
Affiliation(s)
- Md. Munnaf Hossen
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmodi, Dhaka, Bangladesh
- Department of Environmental Sanitation, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmodi, Dhaka, Bangladesh
| | - Md. Shafiqul Islam Khan
- Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - S.M. Hedaytul Islam
- Department of Environmental Sanitation, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md. Hasanuzzaman
- Department of Environmental Sanitation, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Ummey Hafsa Bithi
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmodi, Dhaka, Bangladesh
| | - Md. Abu Tareq
- Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md. Nazmul Hassan
- Department of Environmental Sanitation, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Abu Sayeed
- Department of Post-harvest Technology and Marketing, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Rahat Bin Robbani
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Kanika Mitra
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmodi, Dhaka, Bangladesh
| |
Collapse
|