1
|
Mao W, Wang B, Chen F, Luo D, Li Y, Liu Y, Liu Y, Dong P, Huang R. Trans-resveratrol mitigates miR-204-3p mediated progression of allergic rhinitis by regulating the EGLN3/HIF-1α/IL33/ST2 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155967. [PMID: 39226709 DOI: 10.1016/j.phymed.2024.155967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is a multifactorial disease triggered by interactions between genes and the environment. Clinical evidence has shown that trans-resveratrol, a widely used drug, significantly ameliorates AR pathology. However, the precise mechanisms underlying this effect remain unclear. PURPOSE This study aimed to elucidate the pharmacological mechanisms of action of trans-resveratrol in patients with AR who exhibit hypoxic symptoms. This will be achieved through microRNA sequencing and signaling pathway screening combined with basic experiments to determine the effects of Trans-resveratrol intervention in this patient population. METHODS Network pharmacology was used to determine the therapeutic value of trans-resveratrol in AR. The micro-RNA miR-204-3p was pinpointed by sequencing. Quantitative reverse transcription polymerase chain reaction was used to quantify the expression levels. Haematoxylin and eosin, alcian blue-periodic acid-Schiff, and Masson's trichrome staining were used to assess the effects of hypoxia on nasal mucosa immunohistochemistry and immunofluorescence-localised target proteins. Egl nine homolog 3 (EGLN3) was screened using bioinformatics software. Protein expression was detected by western blotting. Cell growth and death were gauged via Cell Counting Kit-8 and terminal deoxynucleotidyl transferase dUTP nick end labelling staining, respectively. Cell migration was observed using a transwell assay. Enzyme-linked immunosorbent assay was used to measure interleukin (IL)33 levels in the cell supernatants. Flow cytometry was used to verify cell cycle and antigen levels. Electron microscopy was used to visualise the status of the nasal mucosa prior to in vivo expression analysis. RESULTS Patients with hypoxic AR demonstrated more pronounced nasal mucosal remodelling than that in patients with common AR. Sequencing results indicated that these patients had a reduced expression of miR-204-3p. Through a combination utilizing of bioinformatics analysis and experimental validation, EGLN3 has been identified as a direct target of HIF-1α. The low expression level of miR-204-3p represses EGLN3, resulting in the accumulation of HIF-1α and the activation of the IL33/ST2 signaling pathway. These stimulate the proliferation, survival, and migration of HNEpCs, ultimately contributing to mucosa remodeling and AR progression. Trans-resveratrol notably downregulated the levels of HIF-1α and IL33/ST2, while simultaneously increasing the expression of EGLN3. CONCLUSIONS Downregulation of miR-204-3p initiated a vicious cycle of hypoxic AR via EGLN3/HIF-1α/IL33/ST2. Trans-resveratrol reversed the pathological process of nasal mucosa remodeling of hypoxic AR by exhibiting anti-inflammatory and anti-angiogenic functions via the above signaling pathway. Our study uncovers the underlying mechanism by which hypoxia drives the progression of AR. It presents innovative strategies for addressing inflammatory and hypoxia-related diseases, bridging traditional and modern medicine, and highlighting the potential of natural compounds in clinical practice.
Collapse
Affiliation(s)
- Wei Mao
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Baoxin Wang
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Feng Chen
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Dan Luo
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Yu Li
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Yuanyuan Liu
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Yuying Liu
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China.
| | - Pin Dong
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China.
| | - Ruofei Huang
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China.
| |
Collapse
|
2
|
Chen Y, Li X, Wang Z, Yuan S, Shen X, Xie X, Xing K, Zhu Q. Iron deficiency affects oxygen transport and activates HIF1 signaling pathway to regulate phenotypic transformation of VSMC in aortic dissection. Mol Med 2024; 30:90. [PMID: 38886644 PMCID: PMC11184844 DOI: 10.1186/s10020-024-00859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Aortic dissection (AD) is a macrovascular disease which is pathologically characterized by aortic media degeneration.This experiment aims to explore how iron deficiency (ID) affects the function of vascular smooth muscle cell (VSMC) and participates in the occurrence and development of AD by regulating gene expression. METHODS The relationship between iron and AD was proved by Western-blot (WB) and immunostaining experiments in human and animals. Transcriptomic sequencing explored the transcription factors that were altered downstream. WB, flow cytometry and immunofluorescence were used to demonstrate whether ID affected HIF1 expression through oxygen transport. HIF1 signaling pathway and phenotypic transformation indexes were detected in cell experiments. The use of the specific HIF1 inhibitor PX478 further demonstrated that ID worked by regulating HIF1. RESULTS The survival period of ID mice was significantly shortened and the pathological staining results were the worst. Transcriptomic sequencing indicated that HIF1 was closely related to ID and the experimental results indicated that ID might regulate HIF1 expression by affecting oxygen balance. HIF1 activation regulates the phenotypic transformation of VSMC and participates in the occurrence and development of AD in vivo and in vitro.PX478, the inhibition of HIF1, can improve ID-induced AD exacerbation.
Collapse
Affiliation(s)
- Yuanyang Chen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Xu Li
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China.
| | - Shun Yuan
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Xiaoyan Shen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Xiaoping Xie
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Kai Xing
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Qingyi Zhu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| |
Collapse
|
3
|
Li Z, Xie L, Zou L, Xiao S, Tao J. Overexpression of RAD54L attenuates osteoarthritis by suppressing the HIF-1α/VEGF signaling pathway: Bioinformatics analysis and experimental validation. PLoS One 2024; 19:e0298575. [PMID: 38593124 PMCID: PMC11003635 DOI: 10.1371/journal.pone.0298575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/28/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1β (IL-1β)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1β-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.
Collapse
Affiliation(s)
- Zhengnan Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Lifeng Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
| | - Longqiang Zou
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Shiliang Xiao
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Jun Tao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
4
|
Meng F, Tao X, Li L, Jia W, Yang X, Yang Y. Network Pharmacology and Molecular Docking Explore the Mechanism of Mubiezi-Yinyanghuo Herb Pair in the Treatment of Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4502994. [PMID: 38106514 PMCID: PMC10723923 DOI: 10.1155/2023/4502994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/06/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023]
Abstract
Objective Our previous studies have shown that the Mubiezi-Yinyanghuo (MBZ-YYH) herb pair inhibits rheumatoid arthritis (RA) cell proliferation and glycolysis, promising results with an obscure mechanism of action. Methods Therefore, it is necessary to explore the main components of MBZ-YYH and unravel the potential mechanism in RA based on network pharmacology and molecular docking methods. Components and targets of MBZ-YYH were retrieved from the TCMSP. Relevant targets of RA were searched in GeneCards, therapeutic target database (TTD), and DisGeNET databases; the common targets of the MBZ-YYH compounds and RA were obtained by comparison; and a component-target interaction network was established by Cytoscape 3.9.1. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis were performed through the David database. Molecular docking was performed by PyMoL2.3.0 and AutoDock Vina1.1.2 software. Results 7 active ingredients and 58 putatively identified target genes were screened from MBZ, and 16 effective components of YYH and 230 potential targets were identified. There were 29 mutual targets between the two herbs and RA. Through the PPI network, 9 hub targets which contain JUN, CASP3, PPARG, PTGS2, GSK3B, CASP8, HMOX1, ICAM1, and HK2 were screened out. GO term enrichment analysis indicated that positive regulation of the apoptotic process, response to drugs, and response to hypoxia were significantly enriched. Based on KEGG analysis, it was mainly associated with the IL-17 signaling pathway, the TNF signaling pathway, and the p53 signaling pathway. The docking analysis revealed that the effective components showed strong binding activity with the receptors. Conclusion The effects of the MBZ-YYH herb pair on RA were coordinated by the interaction of diverse components, which may be through the IL-17 signaling pathway and the TNF signaling pathway, which target GSK3B, HK2, caspase 3, and caspase 8, inhibiting the proliferation and glycolysis of rheumatoid arthritis fibroblast-like synovial cells (RA-FLS) and tending towards an increasing efficacy and decreasing toxicity effect on RA.
Collapse
Affiliation(s)
- Fuxue Meng
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
| | - Xiaomai Tao
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Longkuan Li
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
| | - Wei Jia
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
| | - Xin Yang
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
| | - Yuchen Yang
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
| |
Collapse
|
5
|
Wang RH, Lin YK, Xie HK, Li H, Li M, He D. Exploring the synergistic pharmacological mechanism of Huoxiang Drink against irritable bowel syndrome by integrated data mining and network pharmacology. Medicine (Baltimore) 2023; 102:e35220. [PMID: 37773835 PMCID: PMC10545357 DOI: 10.1097/md.0000000000035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder, characterized by abdominal pain, bloating, and changes in bowel habits. Huoxiang Drink (HD), derived from traditional Chinese medicine, has been reported to effectively treat digestive disorders caused by external cold and internal dampness. However, the pharmaceutical targets and mechanisms for HD against IBS remain unclear. Data mining, bioinformatics analysis, and network pharmacology were employed to explore the potential pharmacological mechanisms of HD against IBS. In this study, we screened 50 core targets to investigate the pharmacological mechanisms of HD against IBS. Enrichment analysis revealed that HD may participate in various signaling pathways, especially the inflammation-related tumor necrosis factor, signaling pathway and hypoxia-inducible factor signaling pathway. Molecular docking results confirmed that MOL000098 (Quercetin), MOL000006 (Luteolin), MOL005828 (Nobiletin), MOL005916 (Irisolidone), and MOL004328 (Naringenin), as key active ingredients in HD, bound to core targets (tumor protein P53, tumor necrosis factor, matrix metalloproteinases 9, and vascular endothelial growth factor-A) for topical treatment of IBS. This study suggested that HD offered a potential therapeutic strategy against IBS. Our findings may facilitate the efficient screening of active ingredients in HD and provide a theoretical basis for further validating the clinical therapeutic effects of HD on treating IBS.
Collapse
Affiliation(s)
- Ruo-Hui Wang
- Department of ICU, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Ke Lin
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Kai Xie
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | - Mu Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dong He
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Jiang TT, Ji CL, Yu LJ, Song MK, Li Y, Liao Q, Wei T, Olatunji OJ, Zuo J, Han J. Resveratrol-induced SIRT1 activation inhibits glycolysis-fueled angiogenesis under rheumatoid arthritis conditions independent of HIF-1α. Inflamm Res 2023; 72:1021-1035. [PMID: 37016140 DOI: 10.1007/s00011-023-01728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. METHODS HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. RESULTS Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. CONCLUSION Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, 241000, China
| | - Li-Jun Yu
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Meng-Ke Song
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qiang Liao
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Tuo Wei
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | | | - Jian Zuo
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, China.
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, China.
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
7
|
Hedayat M, Ahmadi M, Shoaran M, Rezaie J. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: A focus on non-coding RNAs cargo, drug delivery potential, perspective. Life Sci 2023; 320:121566. [PMID: 36907326 DOI: 10.1016/j.lfs.2023.121566] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Despite the massive efforts advanced over recent years in emerging therapies for neurodegenerative diseases, effective treatment for these diseases is still an urgent need. The application of mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) as a novel therapy for neurodegenerative diseases holds great promise. A growing body of data now suggests that an innovative cell-free therapy, MSCs-Exo, may establish a fascinating alternative therapy due to their unique advantages over MSCs. Notable, MSCs-Exo can infiltrate the blood-brain barrier and then well distribute non-coding RNAs into injured tissues. Research shows that non-coding RNAs of MSCs-Exo are vital effectors that participate in the treatment of neurodegenerative diseases through neurogeneration and neurite outgrowth, modulation of the immune system, reducing neuroinflammation, repairmen of damaged tissue, and promotion of neuroangiogenesis. In addition, MSCs-Exo can serve as a drug delivery system for delivering non-coding RNAs to neurons in neurodegenerative conditions. In this review, we summarize the recent progress in the therapeutic role of non-coding RNAs of MSCs-Exo for various neurodegenerative diseases. This study also discusses the potential drug delivery role of MSCs-Exo and challenges and opportunities in the clinical translation of MSCs-Exo-based therapies for neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Mohaddeseh Hedayat
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Han J, Hua Z, Yang WJ, Wang S, Yan F, Wang JN, Sun T. Resveratrol suppresses neuroinflammation to alleviate mechanical allodynia by inhibiting Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in a rat model of spinal cord injury. Front Mol Neurosci 2023; 16:1116679. [PMID: 36873101 PMCID: PMC9977815 DOI: 10.3389/fnmol.2023.1116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Background Neuropathic pain (NP) is one of intractable complications of spinal cord injury (SCI) and lacks effective treatment. Resveratrol (Res) has been shown to possess potent anti-inflammatory and anti-nociceptive effects. In this study, we investigated the analgesic effect of Res and its underlying mechanism in a rat model of SCI. Methods The rat thoracic (T10) spinal cord contusion injury model was established, and mechanical thresholds were evaluated during an observation period of 21 days. Intrathecal administration with Res (300 μg/10 μl) was performed once a day for 7 days after the operation. On postoperative day 7, the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA) and Real-time quantitative PCR (RT-qPCR), the expression of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway was determined by western blot and RT-qPCR, and the co-labeled phospho-STAT3 (p-STAT3) with neuronal nuclear antigen (NeuN), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba-1) were explored by double immunofluorescence staining in the lumbar spinal dorsal horns. The temporal changes of p-STAT3 were investigated by western blot on the 1st, 3rd, 7th, 14th, and 21st days after the operation. Results Intrathecal administration with Res for 7 successive days alleviated mechanical allodynia of rats during the observation period. Meanwhile, treatment with Res suppressed the production of pro-inflammatory factors TNF-α, IL-1β and IL-6, and inhibited the expressions of phospho-JAK2 and p-STAT3 in the lumbar spinal dorsal horns on postoperative day 7. Additionally, the protein expression of p-STAT3 was significantly increased on the 1st day following the operation and remained elevated during the next 21 days, immunofluorescence suggested that the up-regulated p-STAT3 was co-located with glial cells and neurons. Conclusion Our current results indicated that intrathecal administration with Res effectively alleviated mechanical allodynia after SCI in rats, and its analgesic mechanism might be to suppress neuroinflammation by partly inhibiting JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Han
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Hua
- College of Sports Medicines and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Wen-Jie Yang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shu Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|