1
|
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, Giari L, Bosi G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses. Front Immunol 2023; 14:1250835. [PMID: 37908358 PMCID: PMC10613888 DOI: 10.3389/fimmu.2023.1250835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Fish, comprising over 27,000 species, represent the oldest vertebrate group and possess both innate and adaptive immune systems. The susceptibility of most wild fish to parasitic infections and related diseases is well-established. Among all vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich environment, which, in turn, renders it susceptible to microparasites and macroparasites. Consequently, metazoan parasites emerge as important disease agents, impacting both wild and farmed fish and resulting in substantial economic losses. Given their status as pathogenic organisms, these parasites warrant considerable attention. Helminths, a general term encompassing worms, constitute one of the most important groups of metazoan parasites in fish. This group includes various species of platyhelminthes (digeneans, cestodes), nematodes, and acanthocephalans. In addition, myxozoans, microscopic metazoan endoparasites, are found in water-dwelling invertebrates and vertebrate hosts. It is worth noting that several innate immune cells within the fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads) play active roles in the immune response against parasites. These immune cells include macrophages, neutrophils, rodlet cells, and mast cells also known as eosinophilic granular cells. At the site of intestinal infection, helminths often impact mucous cells number and alter mucus composition. This paper presents an overview of the state of the art on the occurrence and characteristics of innate immune cells in the digestive tract and other visceral organs in different fish-parasite systems. The data, coming especially from studies employed immunohistochemical, histopathological, and ultrastructural analyses, provide evidence supporting the involvement of teleost innate immune cells in modulating inflammatory responses to metazoan and protozoan parasitic infections.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Ying C, Fang X, Wang H, Yang Y, Xu P, Liu K, Yin G. Anisakidae parasitism activated immune response and induced liver fibrosis in wild anadromous Coilia nasus. JOURNAL OF FISH BIOLOGY 2022; 100:958-969. [PMID: 35229303 DOI: 10.1111/jfb.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Anisakidae nematode larvae is one of the most common parasites in wild anadromous Coilia nasus. This study aims to explore the mechanism of the C. nasus immune response to the parasitism of Anisakid nematode larvae. Results found that Anisakid nematode larvae parasitism caused liver injury as evidenced by histomorphology results as well as high levels of aminotransferase and aspertate aminotransferase. Furthermore, Anisakid nematode larvae parasitism induced an immune response in the host, which was characterized by the elevated populations of macrophages and neutrophils in the liver and head-kidney in the Anisakidae-infected group compared to the noninfected group. The expression of immunoglobulin IgM and IgD in the liver and head-kidney was also increased in the Anisakidae-infected group. The Anisakidae-infected group showed higher activity of antioxidant enzymes catalase and superoxide dismutase, which indicates severe oxidative stress, and increased production of pro-inflammatory cytokines, TNF-α, IL-6 as well as MCP-1 in the liver compared with the noninfected group. As a result of inflammation, livers of hosts in the Anisakidae-infected group showed fibrosis, and elevated expression of associated proteins including α-smooth muscle actin, fibronectin, collagen type I and type III compared with the noninfected group. We demonstrated that Anisakid nematode larvae parasitism results in injury and fibrosis in the liver, and triggers immune cell infiltration and inflammation in the liver and head-kidney of C. nasus. Altogether, the results provide a foundation for building an interaction between parasite and host, and will contribute to C. nasus population and fishery resource protection.
Collapse
Affiliation(s)
- Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xin Fang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Honglan Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yanping Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Pao Xu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| |
Collapse
|
3
|
Sayyaf Dezfuli B, Pironi F, Maynard B, Simoni E, Bosi G. Rodlet cells, fish immune cells and a sentinel of parasitic harm in teleost organs. FISH & SHELLFISH IMMUNOLOGY 2022; 121:516-534. [PMID: 35123696 DOI: 10.1016/j.fsi.2021.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Rodlet cells (RCs) are the enigmatic and distinctive pear-shaped cells had found in many tissues of marine and freshwater teleosts. They have a distinctive fibrous capsule or the cell cortex that envelopes conspicuous inclusions called rodlets, basally situated nucleus, and poorly developed mitochondria. The contraction of the cell cortex results in the expulsion of the cell contents through an apical opening. One hundred and thirty years since rodlet cells were first reported, many questions remain about their origin and a function. This review will present new evidence regarding the relationship between RCs and metazoan parasites, and a protozoan infecting organs of different fish species, and update the state of knowledge about the origin, structure and the function of these intriguing fish cells.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Barbara Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Edi Simoni
- Department of Neurosciences, University of Padua, St. Giuseppe Orus, 2/B, 35128, Padua, Italy.
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, University of Milan, St. of University 6, 26900, Lodi, Italy.
| |
Collapse
|
4
|
Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front Immunol 2022; 12:773193. [PMID: 34975860 PMCID: PMC8716388 DOI: 10.3389/fimmu.2021.773193] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, MS, United States
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Malaysia
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
5
|
Nikolić D, Skorić S, Poleksić V, Rašković B. Sex-specific elemental accumulation and histopathology of pikeperch (Sander lucioperca) from Garaši reservoir (Serbia) with human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53700-53711. [PMID: 34032951 DOI: 10.1007/s11356-021-14526-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Accumulation of 26 elements (Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, and Zn) was analyzed in the gills, liver, and muscle of pikeperch males and females from Garaši reservoir using inductively coupled plasma optical emission spectrometry (ICP-OES). Histopathological (HP) changes in the gills and liver, and human health risk were also analyzed. The gills were most affected by metal pollution in both sexes. The concentrations of Hg in muscle tissue of four males, and Cd in two females and two males exceeded the maximum allowed concentrations. Statistical tests only revealed significant differences regarding the concentrations of Mg, K, and S in the muscle (higher in males) and Al, Ag, and Mn in the liver (higher in females) of individuals between sexes. Low to moderate levels of pathological changes were recorded for the gills and liver in both sexes. Significant differences between sexes were observed for inflammatory index of gills (IGI) and HP index of gills (IG), males had higher values compared to females, and for liver necrosis, where females had higher values compared to males. Gills were less affected by HP changes compared to the liver. There was no significant non-cancerogenic and cancerogenic health risk due to the consumption of pikeperch meat from the Garaši reservoir. However, women are under greater risk by consuming the meat of both male and female individuals, probably due to a longer lifetime and lesser body weight compared to the men.
Collapse
Affiliation(s)
- Dušan Nikolić
- Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia.
| | - Stefan Skorić
- Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
| | - Vesna Poleksić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080, Serbia
| | - Božidar Rašković
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080, Serbia
| |
Collapse
|
6
|
Polinas M, Padrós F, Merella P, Prearo M, Sanna MA, Marino F, Burrai GP, Antuofermo E. Stages of Granulomatous Response Against Histozoic Metazoan Parasites in Mullets (Osteichthyes: Mugilidae). Animals (Basel) 2021; 11:ani11061501. [PMID: 34064270 PMCID: PMC8224377 DOI: 10.3390/ani11061501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Parasitic diseases represent a common issue in fish and, when histozoic forms are present, this elicits a chronic inflammatory reaction leading to granuloma formation. Despite the large knowledge of granuloma formation due to parasites in visceral organs, little is known about the development and the evolutive stages of granulomas in naturally infected fish. Mullets (Osteichthyes: Mugilidae) are a widespread euryhaline fish species that harbor different parasites, thus representing a suitable model for the study of parasite-induced granulomas. Combining histopathology and immunohistochemical tools, we identified three developmental granuloma stages (pre-granuloma, intermediate, and late stage), that ranged from an intact parasite with mild signs of tissue reaction to the formation of a structured granuloma. The identified histological patterns could be reliable tools in the staging of the granulomatous response associated with histozoic parasites and are an attempt to broaden the knowledge of the inflammatory response in different host–parasite systems. Abstract Histozoic parasite–fish host interaction is a dynamic process that leads to the formation of a granuloma, a specific chronic inflammatory response with discernible histological features. Mullets (Osteichthyes: Mugilidae) represent a suitable model concerning the development of such lesions in the host–parasite interface. The present work aimed to identify granuloma developmental stages from the early to the late phase of the infection and to characterize the immune cells and non-inflammatory components of the granuloma in different stages. For this purpose, 239 mullets were collected from 4 Sardinian lagoons, and several organs were examined by combining histopathological, bacteriological, and immunohistochemical methods. Granulomas associated with trematode metacercariae and myxozoan parasites were classified into three developmental stages: (1) pre-granuloma stage, characterized by intact encysted parasite and with no or mild tissue reaction; (2) intermediate stage, with partially degenerated parasites, necrosis, and a moderate number of epithelioid cells (ECs); and (3) late stage, with a necrotic core and no detectable parasite with a high number of ECs and fibroblasts. The three-tier staging and the proposed morphological diagnosis make it conceivable that histopathology could be an essential tool to evaluate the granulomas associated with histozoic parasitic infection in fish.
Collapse
Affiliation(s)
- Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Correspondence: ; Tel.: +39-(079)-229566
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Barcelona, Catalonia, Spain;
| | - Paolo Merella
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
| | - Marino Prearo
- Fish Disease Laboratory, State Veterinary Institute of Piedmont, Liguria and Aosta Valley, 10154 Torino, Italy;
| | - Marina Antonella Sanna
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
| | - Fabio Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Mediterranean Center for Disease Control (MCDC), University of Sassari, 07100 Sassari, Italy
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Mediterranean Center for Disease Control (MCDC), University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Survival of metazoan parasites in fish: Putting into context the protective immune responses of teleost fish. ADVANCES IN PARASITOLOGY 2021; 112:77-132. [PMID: 34024360 DOI: 10.1016/bs.apar.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defence mechanisms of fish can be divided into specific and non-specific that act in concert and are often interdependent. Most fish in both wild and cultured populations are vulnerable to metazoan parasites. Endoparasitic helminths include several species of digeneans, cestodes, nematodes, and acanthocephalans. Although they may occur in large numbers, helminth infections rarely result in fish mortality. Conversely, some ectoparasites cause mass mortality in farmed fish. Given the importance of fish innate immunity, this review addresses non-specific defence mechanisms of fish against metazoan parasites, with emphasis on granulocyte responses involving mast cells, neutrophils, macrophages, rodlet cells, and mucous cells. Metazoan parasites are important disease agents that affect wild and farmed fish and can induce high economic loss and, as pathogen organisms, deserve considerable attention. The paper will provide our light and transmission electron microscopy data on metazoan parasites-fish innate immune and neuroendocrine systems. Insights about the structure and functions of the cell types listed above and a brief account of the effects and harms of each metazoan taxon to specific fish apparati/organs will be presented.
Collapse
|
8
|
Matsche MA, Blazer VS, Pulster EL, Mazik PM. Biological and anthropogenic influences on macrophage aggregates in white perch Morone americana from Chesapeake Bay, USA. DISEASES OF AQUATIC ORGANISMS 2021; 143:79-100. [PMID: 33570042 DOI: 10.3354/dao03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The response of macrophage aggregates in fish to a variety of environmental stressors has been useful as a biomarker of exposure to habitat degradation. Total volume of macrophage aggregates (MAV) was estimated in the liver and spleen of white perch Morone americana from Chesapeake Bay using stereological approaches. Hepatic and splenic MAV were compared between fish populations from the rural Choptank River (n = 122) and the highly urbanized Severn River (n = 131). Hepatic and splenic MAV increased with fish age, were greater in females from the Severn River only, and were significantly greater in fish from the more polluted Severn River (higher concentrations of polycyclic aromatic hydrocarbons, organochlorine pesticides, and brominated diphenyl ethers). Water temperature and dissolved oxygen had a significant effect on organ volumes, but not on MAV. Age and river were most influential on hepatic and splenic MAV, suggesting that increased MAV in Severn River fish resulted from chronic exposures to higher concentrations of environmental contaminants and other stressors. Hemosiderin was abundant in 97% of spleens and was inversely related to fish condition and positively related to fish age and trematode infections. Minor amounts of hemosiderin were detected in 30% of livers and positively related to concentrations of benzo[a]pyrene metabolite equivalents in the bile. This study demonstrated that hepatic and splenic MAV were useful indicators in fish from the 2 tributaries with different land use characteristics and concentrations of environmental contaminants. More data are needed from additional tributaries with a wider gradient of environmental impacts to validate our results in this species.
Collapse
Affiliation(s)
- Mark A Matsche
- Maryland Department of Natural Resources, Cooperative Oxford Laboratory, 904 South Morris Street, Oxford, Maryland 21654, USA
| | | | | | | |
Collapse
|
9
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Matsche MA, Blazer VS, Mazik PM. Comparisons of Stereological and Other Approaches for Quantifying Macrophage Aggregates in Piscine Spleens. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:328-348. [PMID: 31634422 DOI: 10.1002/aah.10086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Macrophage aggregates (MAs) are focal accumulations of pigmented macrophages in the spleen and other tissues of fish. A central role of MAs is the clearance and destruction of degenerating cells and recycling of some cellular components. Macrophage aggregates also respond to chemical contaminants and infectious agents and may play a role in the adaptive immune response. Tissue damage or physiological stress can result in increased MA accumulation. As a result, MAs may be sensitive biomarkers of environmental stress in fish. Abundance of MAs in tissues has been reported in a variety of ways-most commonly as density, mean size, and relative area-but the utility of these estimates has not been compared. In this study, four different types of splenic MA abundance estimates (abundance score, density, relative area, and total volume) were compared in two fish populations (Striped Bass Morone saxatilis and White Perch M. americana) with a wide range in ages. Stereological estimates of total volume indicated an increase in MA abundance with spleen volume, which generally corresponded to fish age, and with splenic infections (mycobacteria or trematode parasites). Abundance scores were generally limited in the ability to detect changes in MA abundance by these factors, whereas density estimates were greatly influenced by changes in spleen volume. In some instances, densities declined while the total volume of MAs and spleen volume increased. Experimentally induced acute stress resulted in a decrease in spleen volume and an increase in MA density, although the total volume of MAs remained unchanged. Relative area estimates accounted for the size and number of MAs but not for changes in organ volume. Total volume is an absolute measure of MA abundance irrespective of changes in organ volume or patterns of accumulation and may provide an improved means of quantifying MAs in the spleens of fish.
Collapse
Affiliation(s)
- Mark A Matsche
- Maryland Department of Natural Resources, Cooperative Oxford Laboratory, 904 South Morris Street, Oxford, Maryland, 21654, USA
| | - Vicki S Blazer
- U.S. Geological Survey, National Fish Health Research Laboratory, 11649 Leetown Road, Kearneysville, West Virginia, 25430, USA
| | - Patricia M Mazik
- U.S. Geological Survey, West Virginia Cooperative Fish and Wildlife Research Unit, West Virginia University, 322 Percival Hall, Morgantown, West Virginia, 26506, USA
| |
Collapse
|
11
|
Souza DCDM, Santos MCD, Chagas EC. Immune response of teleost fish to helminth parasite infection. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2019; 28:533-547. [DOI: 10.1590/s1984-29612019080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
Abstract Fish immune systems have become the subject of several studies due to the growing development of aquaculture and fisheries, and the demand for healthy produce for human consumption. Among the parasites responsible for diseases in fish farming, helminths stand out because they cause infections in farmed fish and decrease food conversion, zootechnical performance and meat quality. In the present review, the components that participate in the innate and adaptive immune responses of teleost fish that have so far been described are presented in order to summarize the defenses that these hosts have recourse to, in combating different groups of helminth parasites.
Collapse
|
12
|
Bosi G, DePasquale JA, Manera M, Castaldelli G, Giari L, Sayyaf Dezfuli B. Histochemical and immunohistochemical characterization of rodlet cells in the intestine of two teleosts, Anguilla anguilla and Cyprinus carpio. JOURNAL OF FISH DISEASES 2018; 41:475-485. [PMID: 29159968 DOI: 10.1111/jfd.12751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Rodlet cells (RC) are characterized by a distinctive cell cortex and conspicuous inclusions named "rodlets." These cells are particularly abundant and large in size in intestine of eels. Histochemical, immunohistochemical and ultrastructural investigations were carried out on European eel Anguilla anguilla and Common carp Cyprinus carpio from Northern Italy. Eight biotinylated lectins were used to probe for specific carbohydrate residues in deparaffinized, hydrated intestinal sections of eel and carp. Five antibodies were tested on intestinal sections of both fish species: inducible nitric oxide synthase (i-NOS), leu-enkephalin, lysozyme, serotonin and tumour necrosis factor-α. Lectin histochemistry revealed rodlet cells (RCs) of the eel intestine to react with two of the eight lectins tested, specifically Concanavalin A (ConA) and Sambucus Nigra Agglutinin (SNA). This contrasted to lectin staining of RCs in the intestine of common carp, where four of the eight lectins showed a positive reaction; Dolichos Biflorus Agglutinin (DBA), Wheat Germ Agglutinin (WGA), SNA and ConA. RCs in eel and carp intestine were immunoreactive with antibodies to lysozyme and i-NOS. The occurrence of the inflammatory peptides lysozyme and i-NOS in RCs of the eel and common carp poses in favour that these cells are involved in the mechanism of defence against pathogens.
Collapse
Affiliation(s)
- G Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | - M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - G Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - B Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Sayyaf Dezfuli B, Castaldelli G, Giari L. Histopathological and ultrastructural assessment of two mugilid species infected with myxozoans and helminths. JOURNAL OF FISH DISEASES 2018; 41:299-307. [PMID: 29064086 DOI: 10.1111/jfd.12713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The histopathology and ultrastructure of the intestine of mullets, Liza ramada and Liza saliens, from Comacchio lagoons (northern Italy) naturally infected with myxozoans and helminths were investigated and described. Sixty-two (80.5%) of 77 mullets harboured one or more of the following parasites species: Myxobolus mugchelo (Myxozoa), Neoechinorhynchus agilis (Acanthocephala), Haplosplanchnus pachysomus and Dicrogaster contractus (Digenea). Co-occurrence of helminths with myxozoans was common. The main damage caused by digeneans was destruction of the mucosal epithelium of the villi, necrosis and degeneration of intestinal epithelial cells. More severe intestinal damage was caused by acanthocephalans which reach the submucosa layer with their proboscis. At the site of helminths infection, several mast cells (MCs), rodlet cells (RCs), mucous cells and few neutrophils and macrophages were observed in the epithelium. RCs and mucous cells exhibited discharge activity in close vicinity to the worm's tegument. M. mugchelo conspicuous plasmodia were encysted mainly in muscle and submucosa layers of the intestine. Indeed, spores of M. mugchelo were documented within the epithelial cells of host intestine and in proximity to MCs. Degranulation of the MCs near the myxozoans was very frequent.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Castaldelli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - L Giari
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Manera M, Sayyaf Dezfuli B, DePasquale JA, Giari L. Pigmented macrophages and related aggregates in the spleen of european sea bass dosed with heavy metals: Ultrastructure and explorative morphometric analysis. Microsc Res Tech 2018; 81:351-364. [PMID: 29318746 DOI: 10.1002/jemt.22986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 11/08/2022]
Abstract
The ultrastructure and morphometrics of pigmented macrophages (PMs) were assessed in the spleen of European sea bass experimentally dosed with Cd and Hg. PMs occurred either as solitary cells or as variably structured aggregations, defined as macrophage aggregates (MAs). Light microscopy revealed a high degree of morphological heterogeneity amongst MAs of all experimental groups. At the ultrastructural level, MAs showed a heterogeneous pigment content that was not influenced by the treatment. Cytoplasm rarefaction/vacuolation and euchromatic nuclei, were observed in PMs of dosed fish. Undosed and Cd-dosed samples differ significantly with regard to the following morphometric features: the Minor axis of the best fitting ellipse, Aspect Ratio, and Roundness. In Cd-dosed fish, MAs showed reduced size and complexity. Lacunarity showed significant differences between undosed and both Cd and Hg-dosed samples. These results suggest that heavy metals, and especially Cd, may influence the dynamics of PM aggregation/disaggregation. Variability in splenic MAs was observed both by light and electron microscopy. However, only the morphometric techniques adequately and objectively described the phenomenon, allowing a quantitative/statistical comparison of morphology among experimental groups. These morphometric analyses could be usefully applied in toxicological and ecotoxicological, as well as morpho-functional studies.
Collapse
Affiliation(s)
- Maurizio Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, I-64100, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, I-44121, Italy
| | | | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, I-44121, Italy
| |
Collapse
|
15
|
Dezfuli BS, Manera M, DePasquale JA, Pironi F, Giari L. Liver of the fish Gymnotus inaequilabiatus and nematode larvae infection: Histochemical features and expression of proliferative cell nuclear antigen. JOURNAL OF FISH DISEASES 2017; 40:1765-1774. [PMID: 28493503 DOI: 10.1111/jfd.12641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Histopathological lesions due to third-larval stage of nematode Brevimulticaecum sp. within the liver of a subpopulation of 31 Gymnotus inaequilabiatus from the Pantanal Region (Brazil) were studied with histochemical and immunohistochemical methods. In 93.5% of fish, livers harboured nematode larvae and the intensity of infection ranged from 8 to 293. In livers with highest number of larvae, the hepatic tissue was occupied primarily by the nematodes. Each larva was encircled by focal inflammatory granulomatous reaction. Within the thickness of the granuloma, three concentric layers were recognized: an inner layer of densely packed epithelioid cells, a middle layer of mast cells (MCs) entrapped in a thin fibroblast-connective mesh and an outer layer of fibrous connective tissue with fibroblasts. Epithelioid cells and fibroblasts within the thickness of the granuloma wall were positive for proliferative cell nuclear antigen (PCNA). Moreover, several hepatocytes in infected liver were immunoreactive to PCNA. Occurrence of rodlet cells and MCs in parenchyma, in close proximity to the encysted nematode larvae and near the blood vessel of infected liver, was observed. Macrophage aggregates (MAs) were numerous within the granulomas and scattered in parenchyma of the infected liver. High quantity of haemosiderin was encountered in MAs and hepatocytes of infected liver.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | | | - F Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Dezfuli BS, DePasquale JA, Castaldelli G, Giari L, Bosi G. A fish model for the study of the relationship between neuroendocrine and immune cells in the intestinal epithelium: Silurus glanis infected with a tapeworm. FISH & SHELLFISH IMMUNOLOGY 2017; 64:243-250. [PMID: 28330806 DOI: 10.1016/j.fsi.2017.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Immunohistochemical, immunofluorescence and ultrastructural studies were conducted on a sub-population of 20 wels catfish Silurus glanis from a tributary of the River Po (Northern Italy). Fish were examined for the presence of ecto- and endo-parasites; in the intestine of 5 fish, 11 specimens of cestode Glanitaenia osculata were noted and was the only helminth species encountered. The architecture of intestine and its cellular features were nearly identical in either the uninfected S. glanis or in those harboring G. osculata. Near the site of worm's attachment, mucous cells, several mast cells (MCs), few neutrophils and some endocrine cells (ECs) were found to co-occur within the intestinal epithelium. MCs and neutrophils were abundant also in the submucosa. Immunohistochemical staining revealed that enteric ECs were immunoreactive to met-enkephalin, galanin and serotonin anti-bodies. The numbers of ECs, mucous cells and MCs were significantly higher in infected wels catfish (Mann-Whitney U test, p < 0.05). Dual immunofluorescence staining with the biotinylated lectin Sambucus nigra Agglutinin and the rabbit polyclonal anti-met-enkephalin or anti-serotonin, with parallel transmission electron microscopy, showed that ECs often made intimate contact with the mucous cells and epithelial MCs. The presence of numerous MCs in intestinal epithelium shows S. glanis to be an interesting model fish to study processes underlying intestinal inflammation elicited by an enteric worm. Immune cells, ECs and mucous cells of the intestinal epithelium have been described at the ultrastructural level and their possible functions and interactions together will be discussed.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - J A DePasquale
- Morphogenyx Inc, PO Box 717, East Northport, NY 11731, USA
| | - G Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy.
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
17
|
da Silva WF, Simões MJ, Gutierre RC, Egami MI, Santos AA, Antoniazzi MM, Sasso GR, Ranzani-Paiva MJT. Special dyeing, histochemistry, immunohistochemistry and ultrastructure: A study of mast cells/eosinophilic granules cells (MCs/EGC) from Centropomus parallelus intestine. FISH & SHELLFISH IMMUNOLOGY 2017; 60:502-508. [PMID: 27840170 DOI: 10.1016/j.fsi.2016.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Intestine mast cells/eosinophilic granule cells (MCs/EGC) of the marine species Centropomus parallelus (fat snook) were first studied using light and electron microscopy techniques. Mast cells are cells from the connective tissue found in almost all organs and tissues of vertebrates. In fish, they appear in greater numbers in parts of their bodies that are exposed to their environment, such as skin, gills and intestine. The granules in fat snook's mast cell contain a variety of substances, such as histamine, heparin, chondroitin sulfate, serotonin, proteases and cytokines. The present study of intestine MCs/EGC was carried out in 20 specimens of fat snook. Samples of tissue were fixed in Bouin solution and in buffered formalin. Ferric hematoxylin - Congo red, pH6 acridine orange, pH2.5 and pH0,5 Alcian Blue (AB), toluidine blue, PAS, AB + PAS and immunohistochemistry protocols were used. In the mucosa and submucosa layers, MCs/EGCs granules with basic contents were evidenced by Congo red staining, and with acid contents granules were identified through pH 2.5 and 0,5 AB, and acridine orange. Basic and acid contents were simultaneously evidenced using ferric hematoxylin - Congo red stain. Metachromasia was observed in both mucosal and submucosal mast cells. Neutral glycoproteins were evidenced by using PAS protocol, glycosaminoglycan through AB and both simultaneously through AB + PAS. In immunohistochemistry assays, MCs/EGC were positive for tryptase, chymase and serotonin. As in mammals, the study of samples fixed in modified Karnovsky for transmission electron microscopy evidenced that most of the MCs granules were spherical and showed varying electron density, as described in previous reports on other teleost fish species. The metachromasia observed and the identification of tryptase, chymase and serotonin suggest a great similarity between fat snook's MCs/EGC and those described in the mucosa of mammals.
Collapse
Affiliation(s)
- Wémeson F da Silva
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil; Morphology Department, Adventist University Center of São Paulo, São Paulo, SP, Brazil.
| | - Manuel J Simões
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Robson C Gutierre
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil; Department of Neurology and Neurosurgery, Laboratory of Neurophysiology and Exercise Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Mizue I Egami
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Antenor A Santos
- Morphology Department, Adventist University Center of São Paulo, São Paulo, SP, Brazil
| | | | - Gisela R Sasso
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
18
|
Dezfuli BS, Manera M, Bosi G, DePasquale JA, D'Amelio S, Castaldelli G, Giari L. Anguilla anguilla intestinal immune response to natural infection with Contracaecum rudolphii A larvae. JOURNAL OF FISH DISEASES 2016; 39:1187-1200. [PMID: 26814373 DOI: 10.1111/jfd.12455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The European eel, Anguilla anguilla, is a major warm-water fish species cultured in North and South Europe. Seventy-one A. anguilla collected between 2010 and 2015 from the Comacchio lagoons were examined. Fish were infected and damaged by larvae (L3) of the nematode Contracaecum rudolphii A, which were encapsulated within the thickness of the intestinal wall and within the external visceral peritoneum (serosa). Conspicuous granulomas, visible at sites of infection, were arranged in a trilayer, formed by a series of concentric whorls. The cells involved in the immune response and their distribution in the granuloma layers were assessed by immunohistochemical, immunofluorescence, and ultrastructural techniques. The outer part of the granuloma contained macrophages, macrophage aggregates, and mast cells (MCs) scattered among fibroblasts. This layer was vascularized, with degranulation of MCs occurring in close proximity to the capillaries. The middle layer was rich in MCs and fibroblasts. The inner layer, closest to the parasite larva, consisted mainly of dark epithelioid cells, some of which were necrotic. Non-necrotic epithelioid cells formed desmosomes between themselves or with fibroblasts. Within the granulomas, numerous cells of different types were positive to proliferative cell nuclear antigen antibody, indicating a high degree of cellular proliferation around the larvae.
Collapse
Affiliation(s)
- B S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | - S D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - G Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
Sayyaf Dezfuli B, Fernandes CE, Galindo GM, Castaldelli G, Manera M, DePasquale JA, Lorenzoni M, Bertin S, Giari L. Nematode infection in liver of the fish Gymnotus inaequilabiatus (Gymnotiformes: Gymnotidae) from the Pantanal Region in Brazil: pathobiology and inflammatory response. Parasit Vectors 2016; 9:473. [PMID: 27576434 PMCID: PMC5006381 DOI: 10.1186/s13071-016-1772-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A survey on endoparasitic helminths from freshwater fishes in the Pantanal Region (Mato Grosso do Sul, Brazil) revealed the occurrence of third-larval stage of the nematode Brevimulticaecum sp. (Heterocheilidae) in most organs of Gymnotus inaequilabiatus (Gymnotidae) also known by the local name tuvira. The aim of the present study was to examine Brevimulticaecum sp.-infected tuvira liver at the ultrastructural level and clarify the nature of granulomas and the cellular elements involved in the immune response to nematode larvae. METHODS Thirty-eight adult specimens of tuvira from Porto Morrinho, were acquired in January and March 2016. Infected and uninfected liver tissues were fixed and prepared for histological and ultrastructure investigations. RESULTS The prevalence of infection of tuvira liver by the nematode larvae was 95 %, with an intensity of infection ranging from 4 to 343 larvae (mean ± SD: 55.31 ± 73.94 larvae per liver). In livers with high numbers of nematode larvae, almost entire hepatic tissue was occupied by the parasites. Hepatocytes showed slight to mild degenerative changes and accumulation of pigments. Parasite larvae were surrounded by round to oval granulomas, the result of focal host tissue response to the infection. Each granuloma was typically formed by three concentric layers: an outer layer of fibrous connective tissue with thin elongated fibroblasts; a middle layer of mast cells entrapped in a thin fibroblast-connective mesh; and an inner layer of densely packed epithelioid cells, displaying numerous desmosomes between each other. Numerous macrophage aggregates occurred in the granulomas and in the parenchyma. CONCLUSIONS Our results in tuvira showed that the larvae were efficiently sequestered within the granulomas, most of the inflammatory components were confined within the thickness of the granuloma, and the parenchyma was relatively free of immune cells and without fibrosis. Presumably this focal encapsulation of the parasites permits uninfected portions of liver to maintain its functions and allows the survival of the host.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlos E. Fernandes
- Laboratory of Pathology, CCBS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gizela M. Galindo
- Laboratory of Pathology, CCBS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maurizio Manera
- Department of Food Science, University of Teramo, St. Crispi 212, 64100 Teramo, Italy
| | | | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di Sotto 5, 06123 Perugia, Italy
| | - Sara Bertin
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Dezfuli BS, Bosi G, DePasquale JA, Manera M, Giari L. Fish innate immunity against intestinal helminths. FISH & SHELLFISH IMMUNOLOGY 2016; 50:274-287. [PMID: 26868213 DOI: 10.1016/j.fsi.2016.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support.
Collapse
Affiliation(s)
- B S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, University of Ferrara, Ferrara, Italy.
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, Milan, Italy
| | - J A DePasquale
- Morphogenyx Inc, PO Box 717, East Northport, NY 11731, USA
| | - M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Dezfuli BS, Manera M, Giari L, DePasquale JA, Bosi G. Occurrence of immune cells in the intestinal wall of Squalius cephalus infected with Pomphorhynchus laevis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:556-564. [PMID: 26434712 DOI: 10.1016/j.fsi.2015.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
A sub-population of 34 specimens of chub, Squalius cephalus, was sampled from the River Brenta (Northern Italy) and examined for ecto- and endo-parasites. Pomphorhynchus laevis (Acanthocephala) was the only enteric helminth encountered. Immunofluorescence and ultrastructural studies were conducted on the intestines of chub. Near the site of parasite's attachment, mucous cells, mast cells (MCs), neutrophils and rodlet cells (RCs) were found to co-occur within the intestinal epithelium. The numbers of mucous cells, MCs and neutrophils were significantly higher in infected fish (Mann-Whitney U test, p < 0.05). Dual immunofluorescence staining with the lectin Dolichos Biflorus Agglutinin (DBA) and the macrophage-specific MAC387 monoclonal antibody, with parallel transmission electron microscopy, revealed that epithelial MCs often made intimate contact with the mucous cells. Degranulation of a large number of MCs around the site of the acanthocephalan's attachment and in proximity to mucous cells was also documented. MCs and neutrophils were abundant in the submucosa. Immune cells of the intestinal epithelium have been described at the ultrastructural level and their possible functions and interactions are discussed.
Collapse
Affiliation(s)
- Bahram S Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy.
| | - Maurizio Manera
- Faculty of Biosciences, Agro-Alimentary and Environmental Technologies, University of Teramo, St. Crispi 212, I-64100 Teramo, Italy
| | - Luisa Giari
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | | | - Giampaolo Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
22
|
Dezfuli BS, Manera M, Lorenzoni M, Pironi F, Shinn AP, Giari L. Histopathology and the inflammatory response of European perch, Perca fluviatilis muscle infected with Eustrongylides sp. (Nematoda). Parasit Vectors 2015; 8:227. [PMID: 25889096 PMCID: PMC4404125 DOI: 10.1186/s13071-015-0838-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The European perch, Perca fluviatilis L. is a common paratenic host of dioctophymatid nematodes belonging to the genus Eustrongylides. In this host, once infected oligochaetes, which serve as the first intermediate host, are ingested, Eustrongylides migrates through the intestine and is frequently encountered within the musculature, free within the body cavity, or encapsulated on the viscera. The current study details the first Italian record of Eustrongylides sp. with larvae reported in the muscle of P. fluviatilis. METHODS Uninfected and nematode-infected muscle tissues of perch were fixed and prepared for histological evaluation and electron microscopy. Some sections were subjected to an indirect immunohistochemical method using anti-PCNA, anti-piscidin 3 and anti-piscidin 4 antibodies. RESULTS A total of 510 P. fluviatilis (TL range 15-25 cm) from Lake Trasimeno, Perugia were post-mortemed; 31 individuals had encysted nematode larvae within their musculature (1-2 worms fish(-1)). Histologically, larvae were surrounded by a capsule with an evident acute inflammatory reaction. Muscle degeneration and necrosis extending throughout the sarcoplasm, sarcolemmal basal lamina, endomysial connective tissue cells and capillaries was frequently observed. Within the encapsulating reaction, macrophage aggregates (MAs) were seen. Immunohistochemical staining with the proliferating cell nuclear antigen (PCNA) revealed numerous PCNA-positive cells within the thickness of the capsule and in the immediate vicinity surrounding Eustrongylides sp. larvae (i.e. fibroblasts and satellite cells), suggesting a host response had been initiated to repair the nematode-damaged muscle. Mast cells (MCs) staining positively for piscidin 3, were demonstrated for the first time in response to a muscle-infecting nematode. The piscidin 3 positive MC's were seen principally in the periphery of the capsule surrounding the Eustrongylides sp. larva. CONCLUSIONS A host tissue response to Eustrongylides sp. larvae infecting the musculature of P. fluviatilis was observed. Numerous fibroblasts, MAs and MCs were seen throughout the thick fibroconnectival layer of the capsule enclosing larvae. PCNA positive cells within the capsule suggest that host repair of nematode damaged muscle does occur, while the presence of the antimicrobial peptide piscidin 3 is shown for the first time. This is first report of Eustrongylides sp. in an Italian population of P. fluviatilis.
Collapse
Affiliation(s)
- Bahram S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Maurizio Manera
- Faculty of Biosciences, Agro-Alimentary and Environmental Technologies, University of Teramo, St. Crispi 212, I-64100, Teramo, Italy.
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy.
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Andrew P Shinn
- Fish Vet Group Asia Limited, 99/386, Chaengwattana Building, Chaengwattana Rd., Kwaeng Toongsonghong, Khet Laksi, Bangkok, 10210, Thailand.
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
23
|
Dezfuli BS, Bo T, Lorenzoni M, Shinn AP, Giari L. Fine structure and cellular responses at the host-parasite interface in a range of fish-helminth systems. Vet Parasitol 2015; 208:272-9. [PMID: 25613477 DOI: 10.1016/j.vetpar.2015.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 11/19/2022]
Abstract
A series of ultrastructural-based studies were conducted on the interface region in different fish-helminth systems: (a) an intestinal infection of the cestode Monobothrium wageneri in tench, Tinca tinca; (b) an extensive intestinal submucosa and mucosal infection in tench by metacercariae of an unidentified digenean trematode; (c) an intestinal infection in brown trout, Salmo trutta, by the acanthocephalan Dentitruncus truttae; (d) an extraintestinal infection by larvae of the acanthocephalan, Pomphorhynchus laevis in three-spined sticklebacks, Gasterosteus aculeatus; and (e) an infection in the livers of Eurasian minnow, Phoxinus phoxinus, by larvae of the nematode Raphidascaris acus. Endoparasitic helminths frequently cause inflammation of the digestive tract and associated organs, inducing the recruitment of various immune cells to the site of infection. In each of the fish-helminth systems that were studied, a massive hyperplastic granulocyte response involving mast cells (MCs) and neutrophils in close proximity to the helminths was documented. The current study presents data on the interface region in each fish-helminth system and documents the penetration of mast cells granules within the tegument of P. laevis larvae. No extracellular vesicles containing tegumental secretions from any of the four different taxa of endoparasitic helminths species at the host-parasite interface region were seen.
Collapse
Affiliation(s)
- B S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.
| | - T Bo
- Department of Science and Technological Innovation, University of Piemonte Orientale, Italy
| | - M Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, Italy
| | - A P Shinn
- Fish Vet Group Asia Limited, 99/386, Chaengwattana Building, Chaengwattana Road, Kwaeng Toongsonghong, Khet Laksi, Bangkok 10210, Thailand
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| |
Collapse
|
24
|
Sfacteria A, Brines M, Blank U. The mast cell plays a central role in the immune system of teleost fish. Mol Immunol 2015; 63:3-8. [DOI: 10.1016/j.molimm.2014.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
25
|
Ultrastructural assessment of granulomas in the liver of perch (Perca fluviatilis) Infected by tapeworm. J Comp Pathol 2014; 152:97-102. [PMID: 25557793 DOI: 10.1016/j.jcpa.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/19/2014] [Accepted: 11/17/2014] [Indexed: 01/05/2023]
Abstract
Granulomas caused by migration of larvae of a helminth parasite, Triaenophorus nodulosus, within the liver of perch (Perca fluviatilis) from Rimov Dam Lake (Czech Republic) were assessed by transmission electron microscopy. Lesions were found in the liver of 29 out of 34 perch examined (85.2%) and there were between 1 and 15 T. nodulosus larvae identified per host. Pathological changes were more severe in livers containing more granulomas. Within the granulomas, there were three concentric regions: an outer layer of fibrous connective tissue, a middle clear epithelioid layer and a central dark spindle cell layer. The outer layer contained mast cells, fibroblasts, thick collagen bundles and epithelioid cells. The granulomas contained few lymphocytes and macrophages. Hepatocytes adjacent to the granulomas showed pronounced degeneration (ranging from vacuolar degeneration to acute cellular swelling).
Collapse
|
26
|
Perch liver reaction to Triaenophorus nodulosus plerocercoids with an emphasis on piscidins 3, 4 and proliferative cell nuclear antigen (PCNA) expression. Vet Parasitol 2014; 200:104-10. [DOI: 10.1016/j.vetpar.2013.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/31/2022]
|
27
|
Modulation of leukocytic populations of gilthead sea bream (Sparus aurata) by the intestinal parasite Enteromyxum leei (Myxozoa: Myxosporea). Parasitology 2013; 141:425-40. [DOI: 10.1017/s0031182013001789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe cellular mucosal and systemic effectors of gilthead sea bream (GSB) (Sparus aurata) involved in the acute immune response to the intestinal parasite Enteromyxum leei were studied in fish experimentally infected by the anal route. In the intestinal inflammatory infiltrates and in lymphohaematopoietic organs (head kidney and spleen) of parasitized fish, the number of plasma cells, B cells (IgM immunoreactive) and mast cells (histamine immunoreactive) were significantly higher, whereas the number of acidophilic granulocytes (G7 immunoreactive) decreased, compared with non-parasitized and unexposed fish. These differences were stronger at the posterior intestine, the main target of the parasite, and no differences were found in the thymus. In non-parasitized GSB, the percentage of splenic surface occupied by melanomacrophage centres was significantly higher. These results suggest that the cellular response of GSB to E. leei includes proliferation of leukocytes in lymphohaematopoietic organs and recruitment into intestines via blood circulation involving elements of innate and adaptive immunity. Acidophilic granulocytes and mast cells presented opposite patterns of response to the parasite infection, with an overall depletion of the former and an increased amount of the latter. Some differences between both cell types were also detected in regard to their granule density and cell morphology.
Collapse
|