Salgado-Miranda C, Rojas-Anaya E, García-Espinosa G, Loza-Rubio E. Molecular characterization of the VP2 gene of infectious pancreatic necrosis virus (IPNV) isolates from Mexico.
JOURNAL OF AQUATIC ANIMAL HEALTH 2014;
26:43-51. [PMID:
24689957 DOI:
10.1080/08997659.2013.860060]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) is one of the most important viruses in the Pacific salmon Oncorhynchus spp., Atlantic Salmon Salmo salar, and Rainbow Trout O. mykiss industry. This virus has been shown to produce high mortality among salmonid fry and juveniles, and survivors might become carriers. Since 2000, IPNV has affected Mexican Rainbow Trout culture, resulting in considerable economic losses. In the current study, molecular characterization of the VP2 gene of a number of Mexican IPNV isolates was done and the virus's phylogenetic relationships to IPNV reference strains were investigated. The phylogenetic analysis indicated that Mexican IPNV isolates are closely related to strains from the United States and Canada and that all Mexican IPNV isolates belong to genogroup 1. Furthermore, low genetic diversity was found between the Mexican isolates (identity, 95.8-99.8% nucleotides and 95.8-99.6% amino acids). The result of the analysis of the amino acid residues found at positions 217, 221, and 247 (alanine, threonine, and glutamic acid, respectively) could be associated with virulence, although the expression of virulence factors is more complex and may be influenced by the agent and host factors. The high percentage of identity among the VP2 genes from geographically distant IPNV isolates and the evidence of wide distribution in the country might have been facilitated by carrier trout. This hypothesis is supported by the identification of the amino acid threonine at position 221 in all Mexican isolates, a factor related to the carrier state for IPNV, as reported by other studies.
Collapse