1
|
Fu S, Qian K, Tu X, Lu J, Yao T, Ye L, Ye J. Comparative analysis of intestinal structure, enzyme activity, intestinal microbiota and gene expression in different segments of pufferfish (Takifugu Obscurus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101341. [PMID: 39427531 DOI: 10.1016/j.cbd.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The structure of fish intestines does not have a clear regional division, while the function of the intestines may be related to their structure. Therefore, in this study, the delimitation of intestinal segments in pufferfish (Takifugu obscurus) was achieved by morphological analysis. Subsequently, enzyme activity, intestinal microbiota, and gene expression were examined to compare the differences among the pufferfish various segments. According to four morphological parameters: height of mucosa folds (HF), width of mucosa folds (WF), thickness of muscularis (TM), and cross-sectional area (CSA), the pufferfish's intestine was divided into anterior intestine (AI), middle intestine (MI), and posterior intestine (PI). The activity levels of amylase, lipase, and trypsin in the AI and MI were significantly higher than these in the PI. According to the analysis of 16S rDNA, the dominant microbiota at the phylum level in the different segments were Epsilonbacteraeota, Spirochaetes, and Proteobacteria. At the genus level, there were variations observed in the relative abundance of Brevinema, Mycobacterium, Bradyrhizobium, and Microvirga. α diversity analysis revealed that the richness indexes (Ace and Chao1) were the lowest in the MI, while β diversity analysis revealed significant difference in intestinal microbial community composition among the three intestinal segments. Furthermore, RNA-Seq was used to identify differential expression genes (DEGs) and biological pathways among the different intestinal segments. The DEGs between the AI and MI were enriched in pancreatic secretion and protein digestion and absorption, those between AI and PI were involved in ascorbate and aldarate metabolism and glutathione metabolism, and those between MI and PI were involved in steroid biosynthesis, fat digestion and absorption, vitamin digestion and absorption, and glycine, serine and threonine metabolism. In conclusion, the presented results compare and analyze the differences in various intestinal segments of pufferfish, which will be conductive to future exploration of the functions of these different segments.
Collapse
Affiliation(s)
- Shengli Fu
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Kun Qian
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiao Tu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jie Lu
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Tuo Yao
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
2
|
Reed W, Østevik L, Lie KI, Wisløff H. Mycobacteriosis in Norwegian farmed Atlantic salmon (Salmo salar L.). JOURNAL OF FISH DISEASES 2023; 46:1151-1155. [PMID: 37340874 DOI: 10.1111/jfd.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
|
3
|
Whole-Genome sequencing and comparative genomics of Mycobacterium spp. from farmed Atlantic and coho salmon in Chile. Antonie van Leeuwenhoek 2021; 114:1323-1336. [PMID: 34052985 PMCID: PMC8379129 DOI: 10.1007/s10482-021-01592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/08/2021] [Indexed: 12/02/2022]
Abstract
Several members of the Mycobacterium genus cause invasive infections in humans and animals. According to a recent phylogenetic analysis, some strains of Mycobacterium salmoniphilum (Msal), which are the main culprit in bacterial outbreaks in freshwater fish aquaculture, have been assigned to a separate branch containing Mycobacterium franklinii (Mfra), another species that causes infections in humans. However, this genus is little studied in an aquaculture context. Here, we isolated four Mycobacterium spp. strains from freshwater cultures of Atlantic and coho salmon in Chile and performed whole-genome sequencing for deep genomic characterization. In addition, we described the gross pathology and histopathology of the outbreaks. Several bioinformatic analyses were performed using the genomes of these four Mycobacterium isolates in conjunction with those of Msal strains, four Msal-like strains, and one Mfra strains, plus 17 other publicly available Mycobacterium genomes. We found that three isolates are clustered into the Msal branch, whereas one isolate clustered with the Mfra/Msal-like strains. We further evaluated the presence of virulence and antimicrobial resistance genes and observed that the four isolates were closely related to the Msal and Msal-like taxa and carried several antimicrobial resistance and virulence genes that are similar to those of other pathogenic members of the Mycobacterium clade. Altogether, our characterization Msal and Msal-like presented here shed new light on the basis of mycobacteriosis provides quantitative evidence that Mycobacterium strains are a potential risk for aquaculture asetiological agents of emerging diseases, and highlight their biological scopes in the aquaculture industry.
Collapse
|
4
|
Mycobacteriosis and Infections with Non-tuberculous Mycobacteria in Aquatic Organisms: A Review. Microorganisms 2020; 8:microorganisms8091368. [PMID: 32906655 PMCID: PMC7564596 DOI: 10.3390/microorganisms8091368] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
The Mycobacteriaceae constitute a family of varied Gram-positive organisms that include a large number of pathogenic bacteria. Among these, non-tuberculous mycobacteria are endemic worldwide and have been associated with infections in a large number of organisms, including humans and other mammals and reptiles, as well as fish. In this review, we summarize the most recent findings regarding this group of pathogens in fish. There, four species are most commonly associated with disease outbreaks: Mycobacterium marinum, the most common of these fish mycobacterial pathogens, Mycobacterium fortuitum, Mycobacterium gordonae, and Mycobacterium chelonae. These bacteria have a broad host range: they are zoonotic, and infections have been reported in a large number of fish species. The main route of entry of the bacterium into the fish is through the gastrointestinal route, and the disease is associated with ulcerative dermatitis as well as organomegaly and the development of granulomatous lesions in the internal organs. Mycobacteriaceae are slow-growing and fastidious and isolation is difficult and time consuming and diagnostic is mostly performed using serological and molecular tools. Control of the disease is also difficult: there is currently no effective vaccine and infections react poorly to antibiotherapy. For this reason, more research is needed on the subject of these vexing pathogens.
Collapse
|
5
|
Wang R, Pan X, Xu Y. Altered Intestinal Microbiota Composition Associated with Enteritis in Yellow Seahorses Hippocampus kuda (Bleeker, 1852). Curr Microbiol 2020; 77:730-737. [PMID: 31915986 DOI: 10.1007/s00284-019-01859-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/24/2019] [Indexed: 01/16/2023]
Abstract
Enteritis comprises one of the most common diseases affecting the survival of farmed yellow seahorse (Hippocampus kuda), an important economic fish species cultured worldwide. Although there are several studies describing bacteria associated with seahorse, the microbial alternations associated with enteritis in seahorse has not been extensively investigated. In the present study, high-throughput 16S rRNA gene sequencing was used to explore the changes in the intestinal microbiota of seahorse suffering from enteritis. The results showed that the diversity, structure, and function of intestinal microbiota were significantly different between healthy and diseased seahorse. Particularly, significant increase was observed in Brevinema, Mycobacterium, and Vibrio, as well as significant decrease in Psychrobacter, Bacillus, and Shewanella in diseased seahorse (P < 0.05). In addition, PICRUSt predictions revealed that the intestinal microbiota significantly changed the specific metabolic pathways (related to metabolic diseases, replication and repair, transport and catabolism, infectious diseases and immune system) in diseased seahorse (P < 0.05). Altogether, our findings point out the association between changes of the intestinal microbiota and enteritis in seahorse, which provide basic information useful for optimization of breeding regimes and improvements in the health of this endangered species in captivity.
Collapse
Affiliation(s)
- Runping Wang
- School of Marine Sciences, Key Lab of Applied Marine Biotechnology of MOE, Ningbo University, No. 818 FengHua Road, Ningbo, 315211, China
| | - Xia Pan
- School of Marine Sciences, Key Lab of Applied Marine Biotechnology of MOE, Ningbo University, No. 818 FengHua Road, Ningbo, 315211, China
| | - Yongjian Xu
- School of Marine Sciences, Key Lab of Applied Marine Biotechnology of MOE, Ningbo University, No. 818 FengHua Road, Ningbo, 315211, China.
| |
Collapse
|
6
|
Pathogenesis of mixed infection by Spironucleus sp. and Citrobacter freundii in freshwater angelfish Pterophyllum scalare. Microb Pathog 2016; 100:119-123. [PMID: 27599811 DOI: 10.1016/j.micpath.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/21/2023]
Abstract
The present study was carried out to identify and describe the pathology of the freshwater angelfish Pterophyllum scalare during chronic mortality in an in-door aquaculture system. Scraping of the integument and gills and the collection of intestinal contents to search for external and internal parasites were performed. Kidneys were collected aseptically for the microbiological analysis and the isolates were subjected to antibiotics to test for susceptibility. Subsequently, necropsy for macroscopic assessment and collection of internal organs for histopathology were performed. The fish exhibited lethargy, lip tumor, hemorrhage and liver granuloma. No ectoparasites were diagnosed. Endoparasites of the genus Spironucleus were found in large numbers in the intestine of the affected fish. In the microbiological analysis, Citrobacter freundii was isolated from the kidney and identified by colony PCR. This bacterium showed susceptibility to three of the eight antibiotics evaluated: ciprofloxacin, cefoxitin and tetracycline. For the pathological analysis, liver and spleen granulomas were present. In the intestinal tissue, a large and unusual amount of mast cells and their free granules were described and discussed in detail. The present study showed that mast cells play an important role during the chronic infection of freshwater angelfish.
Collapse
|
7
|
Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 2015; 27:727-52. [PMID: 25278573 DOI: 10.1128/cmr.00035-14] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are present in the environment, mainly in water, and are occasionally responsible for opportunistic infections in humans. Despite the fact that NTM are characterized by a moderate pathogenicity, the diseases caused by NTM at various body sites are increasing on a worldwide level. Among over 150 officially recognized NTM species, only two or three dozen are familiar to clinicians, and even to most microbiologists. In this paper, approximately 50 new species described in the last 8 years are reviewed, and their role in human infections is assessed on the basis of reported clinical cases. The small number of reports concerning most of the "new" mycobacterial species is responsible for the widespread conviction that they are very rare. Their role is actually largely underestimated, mainly because they often remain unrecognized and misidentified. Aiming to minimize such bias, emphasis has been placed on more common identification pitfalls. Together with new NTM, new members of the Mycobacterium tuberculosis complex described in the last few years are also an object of the present review.
Collapse
|