1
|
Ahmmed MK, Bhowmik S, Giteru SG, Zilani MNH, Adadi P, Islam SS, Kanwugu ON, Haq M, Ahmmed F, Ng CCW, Chan YS, Asadujjaman M, Chan GHH, Naude R, Bekhit AEDA, Ng TB, Wong JH. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar Drugs 2022; 20:md20070430. [PMID: 35877723 PMCID: PMC9316650 DOI: 10.3390/md20070430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Stephen G. Giteru
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Alliance Group Limited, Invercargill 9840, New Zealand
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Parise Adadi
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
| | - Shikder Saiful Islam
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7250, Australia;
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Osman N. Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, 620002 Yekaterinburg, Russia;
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | | | - Yau Sang Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Md. Asadujjaman
- Department of Aquaculture, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Gabriel Hoi Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| | - Tzi Bun Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| |
Collapse
|
2
|
Abolfathi M, Akbarzadeh A, Hajimoradloo A, Joshaghani HR. Seasonal changes of hydrolytic enzyme activities in the skin mucus of rainbow trout, Oncorhynchus mykiss at different body sizes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103499. [PMID: 31560872 DOI: 10.1016/j.dci.2019.103499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/22/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
The innate immune factors in the skin mucus of fish are affected by the ecological and physiological conditions such as developmental stage and seasonal cycle. The aim of this study was to investigate the seasonal changes in soluble protein and the hydrolytic enzyme activities of the skin mucus of rainbow trout including lysozyme, alkaline phosphatase (ALP) and proteases at different body sizes. Skin mucus samples were collected over three consecutive season periods including winter, spring and late summer. In each season, sampling was performed separately from three different weight groups including 2-20 g (W1), 100-200 g (W2) and 400-600 g (W3) fish. Our results showed a significant increase of soluble protein in all three weight groups from winter to spring when water temperature elevated from 9 °C to 14 °C. Moreover lysozyme activity was remarkably elevated in W1 fish from winter to late summer. In all three seasons, the activity of lysozyme was significantly decreased along with increasing the fish size. Contrary to lysozyme, the activity of proteases and ALP showed a decreasing trend from winter to late summer. A significant positive correlation was found between the proteases and ALP activity, proposing that both proteases and ALP might have important synergic roles in the mucosal innate immune function of rainbow trout. Moreover, using reverse transcription PCR (RT-PCR) analysis of some proteases genes including cathepsin-L and cathepsin-D, we demonstrated that the proteases are transcribed and likely synthesized in epidermal mucus cells of rainbow trout. The present study confirmed seasonal changes of hydrolytic enzyme activities in the skin mucus of rainbow trout across all three weight groups, with the highest variation in juvenile fish.
Collapse
Affiliation(s)
- Marzieh Abolfathi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Abdolmajid Hajimoradloo
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Department of Medical Laboratory Sciences, Golestan University of Medical Sciences School of Paramedicine, Gorgan, Iran
| |
Collapse
|
3
|
Miccoli A, Saraceni PR, Scapigliati G. Vaccines and immune protection of principal Mediterranean marine fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 94:800-809. [PMID: 31580938 DOI: 10.1016/j.fsi.2019.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review describes and summarizes the knowledge on established and experimental vaccines developed against viral and bacterial pathologies affecting the most important farmed marine finfish species present in the Mediterranean area, namely European seabass Dicentrarchus labrax, sea bream Sparus aurata, turbot Psetta maxima and meagre Argyrosomus regius. The diseases that have been recorded in seabass, sea bream and meagre are caused by bacteria Vibrio anguillarum, Photobacterium damselae, Tenacibaculum maritimum as well as by viruses such as Viral Encephalopathy and Retinopathy/Viral Nervous Necrosis and Lymphocystic disease. The main pathologies of turbot are instead bacteriosis provoked by Tenacibaculum maritimum, Aeromonas sp. and Vibrio anguillarum, and virosis by viral hemorrhagic septicaemia virus. Some vaccines have been optimized and are now regularly available for the majority of the above-mentioned pathogens. A measurable immune protection has been conferred principally against Vibrio anguillarum, Photobacterium damselae sub. piscicida and VER/VNN.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - P R Saraceni
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - G Scapigliati
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
4
|
Elumalai P, Rubeena AS, Arockiaraj J, Wongpanya R, Cammarata M, Ringø E, Vaseeharan B. The Role of Lectins in Finfish: A Review. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2019; 27:152-169. [DOI: 10.1080/23308249.2018.1520191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Preetham Elumalai
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology (Formerly known as SRM University), Kattankulathur, Chennai, Tamil Nadu, India
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Science, University of Palermo, Palermo, Italy
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
5
|
Wu N, Song YL, Wang B, Zhang XY, Zhang XJ, Wang YL, Cheng YY, Chen DD, Xia XQ, Lu YS, Zhang YA. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies. Sci Rep 2016; 6:36048. [PMID: 27808112 PMCID: PMC5093735 DOI: 10.1038/srep36048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.
Collapse
Affiliation(s)
- Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu-Long Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Demorgen Bioinformation Technology Co. Ltd, Wuhan 430072, China
| | - Bei Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying-Yin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi-Shan Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan 430072, China
| |
Collapse
|
6
|
Cordero H, Cuesta A, Meseguer J, Esteban MÁ. Changes in the levels of humoral immune activities after storage of gilthead seabream (Sparus aurata) skin mucus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:500-507. [PMID: 27697558 DOI: 10.1016/j.fsi.2016.09.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/25/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Skin mucus is increasingly used as a source for determining immunity-related proteins and enzymes. However, the ability to accurately measure some activities may be modified by inadequate handling and storage of the samples. This study aims to measure the effect of freezing and lyophilization at the time of collection on such activities. Fresh, frozen (immediately after collection at -20 °C and -80 °C) and lyophilized skin mucus samples obtained from the same groups of fish specimens of gilthead seabream (Sparus aurata L.) were analysed in the assays. The amount of total proteins and sugar residues (determined by lectin binding) present in skin mucus samples fell after both freezing and lyophilization of the samples. While no significant differences were exhibited in the levels of some proteins or enzymes (immunoglobulin M, antiprotease, peroxidase, esterase and alkaline phosphatase) determined in fresh or frozen mucus samples, protease and lysozyme activities were lower in frozen mucus samples than in fresh samples. Lyophilization of the mucus samples drastically decreased the total level of proteins obtained, as well as of protease, peroxidase, lysozyme and alkaline phosphatase activities. The results suggest that freezing skin mucus samples is more suitable than lyophilization if samples are stored before determining enzymatic activities.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
7
|
Correa K, Lhorente JP, López ME, Bassini L, Naswa S, Deeb N, Di Genova A, Maass A, Davidson WS, Yáñez JM. Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes. BMC Genomics 2015; 16:854. [PMID: 26499328 PMCID: PMC4619534 DOI: 10.1186/s12864-015-2038-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Pisciricketssia salmonis is the causal agent of Salmon Rickettsial Syndrome (SRS), which affects salmon species and causes severe economic losses. Selective breeding for disease resistance represents one approach for controlling SRS in farmed Atlantic salmon. Knowledge concerning the architecture of the resistance trait is needed before deciding on the most appropriate approach to enhance artificial selection for P. salmonis resistance in Atlantic salmon. The purpose of the study was to dissect the genetic variation in the resistance to this pathogen in Atlantic salmon. Methods 2,601 Atlantic salmon smolts were experimentally challenged against P. salmonis by means of intra-peritoneal injection. These smolts were the progeny of 40 sires and 118 dams from a Chilean breeding population. Mortalities were recorded daily and the experiment ended at day 40 post-inoculation. Fish were genotyped using a 50K Affymetrix® Axiom® myDesignTM Single Nucleotide Polymorphism (SNP) Genotyping Array. A Genome Wide Association Analysis was performed on data from the challenged fish. Linear regression and logistic regression models were tested. Results Genome Wide Association Analysis indicated that resistance to P. salmonis is a moderately polygenic trait. There were five SNPs in chromosomes Ssa01 and Ssa17 significantly associated with the traits analysed. The proportion of the phenotypic variance explained by each marker is small, ranging from 0.007 to 0.045. Candidate genes including interleukin receptors and fucosyltransferase have been found to be physically linked with these genetic markers and may play an important role in the differential immune response against this pathogen. Conclusions Due to the small amount of variance explained by each significant marker we conclude that genetic resistance to this pathogen can be more efficiently improved with the implementation of genetic evaluations incorporating genotype information from a dense SNP array. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2038-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Correa
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, Santiago, Chile.
| | | | - María E López
- Facultad de Ciencias Agronómicas, Universidad de Chile, Av Santa Rosa 11315, Santiago, Chile.
| | - Liane Bassini
- Facultad de Ciencias Agronómicas, Universidad de Chile, Av Santa Rosa 11315, Santiago, Chile.
| | - Sudhir Naswa
- Genus plc, 100 Bluegrass Commons Blvd. Suite 2200, Hendersonville, TN, 37075, USA.
| | - Nader Deeb
- Genus plc, 100 Bluegrass Commons Blvd. Suite 2200, Hendersonville, TN, 37075, USA.
| | - Alex Di Genova
- Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation, Universidad de Chile, Beauchef 851, Santiago, Chile.
| | - Alejandro Maass
- Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation, Universidad de Chile, Beauchef 851, Santiago, Chile.
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, Santiago, Chile.
| |
Collapse
|