1
|
Rounsville TF, Polinski MP, Marini AG, Turner SM, Vendramin N, Cuenca A, Pietrak MR, Peterson BC, Bouchard DA. Rapid differentiation of infectious salmon anemia virus avirulent (HPR0) from virulent (HPRΔ) variants using multiplex RT-qPCR. J Vet Diagn Invest 2024; 36:329-337. [PMID: 38212882 PMCID: PMC11110766 DOI: 10.1177/10406387231223290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Infectious salmon anemia virus (ISAV; Isavirus salaris) causes an economically important disease of Atlantic salmon (Salmo salar L.). ISA outbreaks have resulted in significant losses of farmed salmon globally, often with a sudden onset. However, 2 phenotypically distinct variants of ISAV exist, each with divergent disease outcomes, associated regulations, and control measures. ISAV-HPRΔ, also known as ISAV-HPR deleted, is responsible for ISA outbreaks; ISAV-HPR0, is avirulent and is not known to cause fish mortality. Current detection methodology requires genetic sequencing of ISAV-positive samples to differentiate phenotypes, which may slow responses to disease management. To increase the speed of phenotypic determinations of ISAV, we developed a new, rapid multiplex RT-qPCR method capable of 1) detecting if a sample contains any form of ISAV, 2) discriminating whether positive samples contain HPRΔ or HPR0, and 3) validating RNA extractions with an internal control, all in a single reaction. Following assay development and optimization, we validated this new multiplex on 31 ISAV strains collected from North America and Europe (28 ISAV-HPRΔ, 3 ISAV-HPR0). Finally, we completed an inter-laboratory comparison of this multiplex qPCR with commercial ISAV testing and found that both methods provided equivalent results for ISAV detection.
Collapse
Affiliation(s)
- Thomas F. Rounsville
- Pest Management Unit, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
| | - Mark P. Polinski
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME, USA
| | - Alyssa G. Marini
- Pest Management Unit, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
- University of Maine School of Biology and Ecology, Orono, ME, USA
| | - Sarah M. Turner
- Aquatic Animal Health Laboratory, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
| | - Niccolò Vendramin
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Argelia Cuenca
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael R. Pietrak
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME, USA
| | - Brian C. Peterson
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME, USA
| | - Deborah A. Bouchard
- Aquatic Animal Health Laboratory, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
| |
Collapse
|
2
|
Eckstrand CD, Torrevillas BK, Wolking RM, Bradway DS, Warg JV, Clayton RD, Williams LB, Pessier AP, Reno JL, McMenamin-Snekvik KM, Thompson J, Baszler T, Snekvik KR. Investigation of laboratory methods for characterization of aquatic viruses in fish infected experimentally with infectious salmon anemia virus. J Vet Diagn Invest 2024; 36:319-328. [PMID: 37203453 PMCID: PMC11110770 DOI: 10.1177/10406387231173332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Rapid growth in aquaculture has resulted in high-density production systems in ecologically and geographically novel conditions in which the emergence of diseases is inevitable. Well-characterized methods for detection and surveillance of infectious diseases are vital for rapid identification, response, and recovery to protect economic and food security. We implemented a proof-of-concept approach for virus detection using a known high-consequence fish pathogen, infectious salmon anemia virus (ISAV), as the archetypal pathogen. In fish infected with ISAV, we integrated histopathology, virus isolation, whole-genome sequencing (WGS), electron microscopy (EM), in situ hybridization (ISH), and reverse transcription real-time PCR (RT-rtPCR). Fresh-frozen and formalin-fixed tissues were collected from virus-infected, control, and sham-infected Atlantic salmon (Salmo salar). Microscopic differences were not evident between uninfected and infected fish. Viral cytopathic effect was observed in cell cultures inoculated with fresh-frozen tissue homogenates from 3 of 3 ISAV-infected and 0 of 4 uninfected or sham-infected fish. The ISAV genome was detected by shotgun metagenomics in RNA extracted from the medium from 3 of 3 inoculated cell cultures, 3 of 3 infected fish, and 0 of 4 uninfected or sham-infected fish, yielding sufficient coverage for de novo assembly. An ISH probe against ISAV revealed ISAV genome in multiple organs, with abundance in renal hematopoietic tissue. Virus was detected by RT-rtPCR in gill, heart, kidney, liver, and spleen. EM and metagenomic WGS from tissues were challenging and unsuccessful. Our proof-of-concept methodology has promise for detection and characterization of unknown aquatic pathogens and also highlights some associated methodology challenges that require additional investigation.
Collapse
Affiliation(s)
- Chrissy D. Eckstrand
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Brandi K. Torrevillas
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Rebecca M. Wolking
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Daniel S. Bradway
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Janet V. Warg
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Richard D. Clayton
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Laura B. Williams
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Allan P. Pessier
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Joetta Lynn Reno
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | | | - Jim Thompson
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Timothy Baszler
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Kevin R. Snekvik
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
3
|
Ditlecadet D, Gautreau C, Boston L, Liston R, Johnsen E, Gagné N. First report of successful isolation of a HPR0-like variant of the infectious salmon anaemia virus (ISAV) using cell culture. JOURNAL OF FISH DISEASES 2022; 45:479-483. [PMID: 34843624 PMCID: PMC9299946 DOI: 10.1111/jfd.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
ISAV is the causative agent of the infectious salmon anaemia (ISA), a disease listed by the OIE that has caused important economic losses to the Atlantic salmon (Salmo salar) industry. ISAV variants are identified as pathogenic or non-pathogenic based on the presence or absence of a deletion in the highly polymorphic region (HPR) of segment 6 (S6). HPRΔ variants (pathogenic) are the only forms of the virus known to grow in cell culture. This is the first report of a HPR0 variant isolated in cell culture. The isolate is, however, atypical as it shows a marker of virulent variants on another segment (S5), which has never been reported for any other HPR0 variants. The significance of this finding remains unclear until more in-depth work is carried out but does challenge current knowledge.
Collapse
Affiliation(s)
- D. Ditlecadet
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| | - C. Gautreau
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| | - L. Boston
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| | | | | | - N. Gagné
- Fisheries & Oceans CanadaGulf Fisheries CenterMonctonCanada
| |
Collapse
|
4
|
Rimstad E, Markussen T. Infectious salmon anaemia virus-molecular biology and pathogenesis of the infection. J Appl Microbiol 2020; 129:85-97. [PMID: 31885186 DOI: 10.1111/jam.14567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Aquaculture has a long history in many parts of the world, but it is still young at an industrial scale. Marine fish farming in open nets of a single fish species at high densities compared to their wild compatriots opens a plethora of possible infections. Infectious salmon anaemia (ISA) is an example of disease that surfaced after large-scale farming of Atlantic salmon (Salmo salar) appeared. Here, a review of the molecular biology of the ISA virus (ISAV) with emphasis on its pathogenicity is presented. The avirulent HPR0 variant of ISAV has resisted propagation in cell cultures, which has restricted the ability to perform in vivo experiments with this variant. The transition from avirulent HPR0 to virulent HPRΔ has not been methodically studied under controlled experimental conditions, and the triggers of the transition from avirulent to virulent forms have not been mapped. Genetic segment reassortment, recombination and mutations are important mechanisms in ISAV evolution, and for the development of virulence. In the 25 years since the ISAV was identified, large amounts of sequence data have been collected for epidemiologic and transmission studies, however, the lack of good experimental models for HPR0 make the risk evaluation of the presence of this avirulent, ubiquitous variant uncertain. This review summarizes the current knowledge related to molecular biology and pathogenicity of this important aquatic orthomyxovirus.
Collapse
Affiliation(s)
- E Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - T Markussen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
5
|
Arseneau JR, Gautreau C, Boston L, Goguen ML, Laflamme M. Accelerated ISAV replication detection by cell culture methods combined with time-monitoring RT-qPCR. JOURNAL OF FISH DISEASES 2019; 42:257-267. [PMID: 30488967 DOI: 10.1111/jfd.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Infectious salmon anaemia (ISA) is a viral disease that affects farmed Atlantic salmon (Salmo salar L.), often leading to mass mortalities. A quick detection of the ISA virus (ISAV) is crucial for decision-making and can prevent the occurrence of future outbreaks. Screening done by Canada's National Aquatic Animal Health Laboratory System (NAAHLS) uses quantitative reverse transcription PCR (RT-qPCR) followed by sequencing of PCR amplicons. As neither technique provides information regarding the infectivity of the virus, suspected virulent strains are subsequently tested using viral isolation. However, this stepwise process can require significant time to deliver results. To speed up this delivery, we have improved on these pre-existing techniques by combining the use of cell culture with RT-qPCR to detect replicative virus in as little as 5 days. Preliminary assays enabled the establishment of a minimal shift in Ct values over time, which is representative of viral replication in cultured cells. Subsequent blind panel analyses allowed the establishment of the optimal sampling days, as well as diagnostic sensitivity (DSe) and specificity (DSp) estimates. This method could be adopted not only by laboratories conducting diagnostic analyses for ISAV, but also for other slow-replicating viral agents that replicate through a budding mechanism.
Collapse
Affiliation(s)
- Jean-René Arseneau
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Chantal Gautreau
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Linda Boston
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Michel L Goguen
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Mark Laflamme
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| |
Collapse
|