1
|
Sivagurunathan U, Izquierdo M, Tseng Y, Prabhu PAJ, Zamorano MJ, Robaina L, Domínguez D. Effects of the Interaction between Dietary Vitamin D 3 and Vitamin K 3 on Growth, Skeletal Anomalies, and Expression of Bone and Calcium Metabolism-Related Genes in Juvenile Gilthead Seabream ( Sparus aurata). Animals (Basel) 2024; 14:2808. [PMID: 39409757 PMCID: PMC11475414 DOI: 10.3390/ani14192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction between vitamin D and vitamin K is crucial for regulating bone metabolism and maintaining calcium homeostasis across diverse animal species due to their complementary roles in calcium metabolism and bone health. However, research on this interaction of vitamin D and K in fish, particularly Mediterranean species like gilthead seabream, is limited or not studied. This study aimed to understand the effects of different dietary combinations of vitamin D3 and K3 on juvenile gilthead seabream. Accordingly, seabream juveniles were fed with varying combinations of vitamin D3/vitamin K3 (mg/kg diet) for 3 months: (0.07/0.01), (0.20/0.58), (0.19/1.65), (0.51/0.74), (0.56/1.00). At the end of the trial, survival, growth, body morphology, serum calcitriol, and vertebral mineral composition remained unaffected by varying vitamin levels, while gene expression patterns related to bone formation, resorption, and calcium regulation in various tissues were significantly influenced by both vitamins and their interaction. Gilthead seabream juveniles fed the 0.07/0.01 mg/kg diet upregulated calcium-regulating genes in the gills, indicating an effort to enhance calcium absorption to compensate for dietary deficiencies. Conversely, an increase in vitamin D3 and K3 up to 0.19 and 1.65 mg/kg, respectively, upregulated bone formation, bone remodeling, and calcium homeostasis-related gene expression in vertebra and other tissues. On the contrary, a dietary increase in these vitamins up to 0.56 mg/kg vitamin D3 and 1.00 mg/kg vitamin K3 downregulated calcium metabolism-related genes in tissues, suggesting an adverse interaction resulting from elevated levels of these vitamins in the diet. Hence, sustaining an equilibrium in the dietary intake of vitamin D3 and vitamin K3, in an appropriately combined form, may potentially induce interactions between the vitamins, contributing to favorable effects on bone development and calcium regulation in gilthead seabream juveniles.
Collapse
Affiliation(s)
- Ulaganathan Sivagurunathan
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Yiyen Tseng
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Philip Antony Jesu Prabhu
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
- Nutrition and Feed Technology Group, Nofima, 5141 Bergen, Norway
| | - María Jesús Zamorano
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - David Domínguez
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
| |
Collapse
|
2
|
Bouza C, Losada AP, Fernández C, Álvarez-Dios JA, de Azevedo AM, Barreiro A, Costas D, Quiroga MI, Martínez P, Vázquez S. A comprehensive coding and microRNA transcriptome of vertebral bone in postlarvae and juveniles of Senegalese sole (Solea senegalensis). Genomics 2024; 116:110802. [PMID: 38290593 DOI: 10.1016/j.ygeno.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.
Collapse
Affiliation(s)
- Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana P Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José A Álvarez-Dios
- Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana Manuela de Azevedo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Barreiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, Vigo 36331, Spain
| | - María Isabel Quiroga
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sonia Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
3
|
Luján-Amoraga L, Delgado-Martín B, Lourenço-Marques C, Gavaia PJ, Bravo J, Bandarra NM, Dominguez D, Izquierdo MS, Pousão-Ferreira P, Ribeiro L. Exploring Omega-3's Impact on the Expression of Bone-Related Genes in Meagre ( Argyrosomus regius). Biomolecules 2023; 14:56. [PMID: 38254657 PMCID: PMC10813611 DOI: 10.3390/biom14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Dietary supplementation with Omega-3 fatty acids seems to promote skeletal health. Therefore, their consumption at imbalanced or excessive levels has offered less beneficial or even prejudicial effects. Fish produced in aquaculture regimes are prone to develop abnormal skeletons. Although larval cultures are usually fed with diets supplemented with Omega-3 Long Chain Polyunsaturated fatty acids (LC-PUFAs), the lack of knowledge about the optimal requirements for fatty acids or about their impact on mechanisms that regulate skeletal development has impeded the design of diets that could improve bone formation during larval stages when the majority of skeletal anomalies appear. In this study, Argyrosomus regius larvae were fed different levels of Omega-3s (2.6% and 3.6% DW on diet) compared to a commercial diet. At 28 days after hatching (DAH), their transcriptomes were analyzed to study the modulation exerted in gene expression dynamics during larval development and identify impacted genes that can contribute to skeletal formation. Mainly, both levels of supplementation modulated bone-cell proliferation, the synthesis of bone components such as the extracellular matrix, and molecules involved in the interaction and signaling between bone components or in important cellular processes. The 2.6% level impacted several genes related to cartilage development, denoting a special impact on endochondral ossification, delaying this process. However, the 3.6% level seemed to accelerate this process by enhancing skeletal development. These results offered important insights into the impact of dietary Omega-3 LC-PUFAs on genes involved in the main molecular mechanism and cellular processes involved in skeletal development.
Collapse
Affiliation(s)
- Leticia Luján-Amoraga
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
| | - Belén Delgado-Martín
- Department of Microbiology and Crop Protection, Institute of Subtropical and Mediterranean Horticulture (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Cátia Lourenço-Marques
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
- Collaborative Laboratory on Sustainable and Smart Aquaculture (S2AQUACOLAB) Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve (UALG), 8005-139 Faro, Portugal;
| | - Jimena Bravo
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 7, 1495-006 Lisbon, Portugal;
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - David Dominguez
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Marisol S. Izquierdo
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Pedro Pousão-Ferreira
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
- Collaborative Laboratory on Sustainable and Smart Aquaculture (S2AQUACOLAB) Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Laura Ribeiro
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
| |
Collapse
|
4
|
Mhalhel K, Levanti M, Abbate F, Laurà R, Guerrera MC, Aragona M, Porcino C, Pansera L, Sicari M, Cometa M, Briglia M, Germanà A, Montalbano G. Skeletal Morphogenesis and Anomalies in Gilthead Seabream: A Comprehensive Review. Int J Mol Sci 2023; 24:16030. [PMID: 38003219 PMCID: PMC10671147 DOI: 10.3390/ijms242216030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The gilthead seabream, one of the most important species in Mediterranean aquaculture, with an increasing status of exploitation in terms of production volume and aquafarming technologies, has become an important research topic over the years. The accumulation of knowledge from several studies conducted during recent decades on their functional and biological characteristics has significantly improved their aquacultural aspects, namely their reproductive success, survival, and growth. Despite the remarkable progress in the aquaculture industry, hatchery conditions are still far from ideal, resulting in frequent abnormalities at the beginning of intensive culture, entailing significant economic losses. Those deformities are induced during the embryonic and post-embryonic periods of life, and their development is still poorly understood. In the present review, we created a comprehensive synthesis that covers the various aspects of skeletal morphogenesis and anomalies in the gilthead seabream, highlighting the genetic, environmental, and nutritional factors contributing to bone deformities and emphasized the potential of the gilthead seabream as a model organism for understanding bone morphogenesis in both aquaculture and translational biological research. This review article addresses the existing lack in the literature regarding gilthead seabream bone deformities, as there are currently no comprehensive reviews on this subject.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| |
Collapse
|
5
|
Sivagurunathan U, Dominguez D, Tseng Y, Zamorano MJ, Philip AJP, Izquierdo M. Interaction between Dietary Vitamin D 3 and Vitamin K 3 in Gilthead Seabream Larvae ( Sparus aurata) in Relation to Growth and Expression of Bone Development-Related Genes. AQUACULTURE NUTRITION 2023; 2023:3061649. [PMID: 37260465 PMCID: PMC10229253 DOI: 10.1155/2023/3061649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Vitamins D and K are essential fat-soluble nutrients that intervene in bone development processes among other biological functions. The present study is aimed at investigating the potential combined effect of dietary supplementation with vitamin D3 (cholecalciferol) and vitamin K3 (menadione) in gilthead seabream (Sparus aurata) larvae. For that purpose, seabream diets were supplemented with different combinations of vitamin D3/vitamin K3 (mg/kg diet) as follows: 0.00/0, 0.06/70, 0.06/170, 0.13/70, 0.13/170, 0.40/70, and 0.40/170. Feeding gilthead seabream larvae (22 days post hatch) for 21 days with the diets supplemented with 0.06-0.13 mg/kg vitamin D3 and 70 mg/kg vitamin K3 (diets 0.06/70 and 0.13/70) led to the highest larval growth and survival and the highest expression of important biomarkers of both bone development and health, such as bmp2, osx, and mgp, and calcium homeostasis, such as pthrp and casr. However, the increased supplementation with both vitamins at 0.40 mg/kg vitamin D3 and 170 mg/kg vitamin K3 (diet 0.40/170) reduced larval growth and survival, downregulated bmp2 and pthrp expressions, and upregulated osx and mgp, causing an unbalance in the relative expression of these genes. The results of the present study have shown the interaction between vitamin D3 supplementation and vitamin K3 supplementation in larval performance and gene expression related to bone development and calcium homeostasis, denoting the significance of a correct balance between both vitamins in larval diets.
Collapse
Affiliation(s)
- U. Sivagurunathan
- Grupo de Investigación en Acuicultura (GIA), EcoAqua Institute, University of Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - David Dominguez
- Grupo de Investigación en Acuicultura (GIA), EcoAqua Institute, University of Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Yiyen Tseng
- Grupo de Investigación en Acuicultura (GIA), EcoAqua Institute, University of Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - María Jesús Zamorano
- Grupo de Investigación en Acuicultura (GIA), EcoAqua Institute, University of Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), EcoAqua Institute, University of Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| |
Collapse
|
6
|
Otero-Tarrazón A, Perelló-Amorós M, Jorge-Pedraza V, Moshayedi F, Sánchez-Moya A, García-Pérez I, Fernández-Borràs J, García de la serrana D, Navarro I, Blasco J, Capilla E, Gutierrez J. Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone. Front Endocrinol (Lausanne) 2023; 14:1101356. [PMID: 36755925 PMCID: PMC9899866 DOI: 10.3389/fendo.2023.1101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joaquin Gutierrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|