1
|
Li M, Li D, Li F, Liu W, Wang S, Wu G, Wu G, Tan G, Zheng Z, Li L, Pan Z, Liu Y. Hemolysin from Aeromonas hydrophila enhances the host's serum enzyme activity and regulates transcriptional responses in the spleen of Cyprinus rubrofuscus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115375. [PMID: 37591129 DOI: 10.1016/j.ecoenv.2023.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/04/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Aeromonas hydrophila is a conditional pathogen impacting public hygiene and safety. Hemolysin is a virulence factor of Aeromonas hydrophila that causes erythrocyte hemolysis, yet its transcriptional response to Cyprinus rubrofuscus remains unknown. Our investigation confirmed the hemolysis of hemolysin from A. hydrophila. Serum enzyme activity was evaluated weekly after C. rubrofuscus were immunized with hemolysin Ahh1. The results showed that the hemolysin enhances the serum superoxide dismutase (SOD), lysozyme (LZM), and catalase (CAT) activity, which reached a maximum on day 14. To elucidate the molecular interaction between hemolysin from A. hydrophila and the host, we performed transcriptome sequencing on the spleen of C. rubrofuscus 14 days post hemolysin infection. The total number of clean reads was 41.37 Gb, resulting in 79,832 unigenes with an N50 length of 1863 bp. There were 1982 significantly differentially expressed genes (DEGs), including 1083 upregulated genes and 899 downregulated genes. Transcript levels of the genes, such as LA6BL, CD2, and NLRC5, were significantly downregulated, while those of IL11, IL1R2, and IL8 were dramatically upregulated. The DEGs were mainly enriched in the immune disease, viral protein interaction with cytokine and cytokine receptor, and toll-like receptor pathways, suggesting that hemolysin stimulation can activate the transcriptional responses. RT-qPCR experiments results of seven genes, IL-8, STAT2, CTSK, PRF1, CXCL9, TLR5, and SACS, showed that their expression was highly concordant with RNA-seq data. We clarified for the first time the key genes and signaling pathways response to hemolysin from A. hydrophila, which offers strategies for treating and preventing diseases.
Collapse
Affiliation(s)
- Mei Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Dan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fenglan Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Wenli Liu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guofeng Wu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Guiliang Tan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziyi Zheng
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Lin Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziqiang Pan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| |
Collapse
|
2
|
Tolo IE, Bajer PG, Mor SK, Phelps NBD. Disease ecology and host range of Cyprinid herpesvirus 3 (CyHV-3) in CyHV-3 endemic lakes of North America. JOURNAL OF FISH DISEASES 2023; 46:679-696. [PMID: 36966383 DOI: 10.1111/jfd.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 05/07/2023]
Abstract
Cyprinid herpesvirus-3 (CyHV-3) is an important pathogen of common carp (Cyprinus carpio, carp) causing significant economic and ecological impacts worldwide. The recent emergence of CyHV-3 in the Upper Midwest region of the United States has raised questions related to the disease ecology and host specificity of CyHV-3 in wild carp populations. To determine the prevalence of CyHV-3 in wild populations of fishes in Minnesota, we surveyed five lakes in 2019 in which the virus was known to have caused mass mortality events in carp from 2017 to 2018. A total of 28 species (n = 756 total fish) of native fishes and 730 carp were screened for the presence of CyHV-3 DNA using specific qPCR. None of the native fish tissues tested positive for CyHV-3 although the prevalence of CyHV-3 in carp was 10%-50% in the five lakes. A single lake (Lake Elysian) with a 50% DNA detection rate and evidence of ongoing transmission and CyHV-3-associated mortality was surveyed again in 2020 from April to September. During this period, none of the tissues from 24 species (n = 607 total fish) tested positive for CyHV-3 though CyHV-3 DNA and mRNA (indicating viral replication) was detected in carp tissues during the sampling period. CyHV-3 DNA was detected most often in brain samples without evidence of replication, potentially indicating that brain tissue is a site for CyHV-3 latency. Paired qPCR and ELISA testing for Lake Elysian in 2019-2020 identified young carp (especially males) to be the primary group impacted by CyHV-3-associated mortality and acute infections, but with no positive detections in juvenile carp. Seroprevalence of carp from Lake Elysian was 57% in 2019, 92% in April of 2020 and 97% in September 2020. These results further corroborate the host specificity of CyHV-3 to carp in mixed wild populations of fishes in Minnesota and provide additional insights into the ecological niche of CyHV-3 in shallow lake populations of carp in North America.
Collapse
Affiliation(s)
- Isaiah E Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Przemyslaw G Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Sunil K Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
de Lucca Maganha SR, Cardoso PHM, de Carvalho Balian S, de Almeida-Queiroz SR, Fernandes AM, de Sousa RLM. Molecular detection and phylogenetic analysis of Cyprinid herpesvirus 3 in Brazilian ornamental fish. Braz J Microbiol 2022; 53:1807-1815. [PMID: 35867280 PMCID: PMC9679093 DOI: 10.1007/s42770-022-00797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2022] [Indexed: 01/13/2023] Open
Abstract
Cyprinid herpesvirus 3 has a worldwide distribution and presents high mortality rates in species of Cyprinus carpio, causing serious economic loss to the global aquaculture industry. The description of this infection in other ornamental fish species is still limited. For this purpose, 100 ornamental fish from 24 different species were tested by PCR for Cyprinid hespesvirus 3 and the positive samples represented 6% of the tested samples. Phylogenetic reconstruction, based on the Thymidine Kinase gene, revealed the existence of two distinct clades. One clade grouped a Brazilian sample with European and Asian genotypes of CyHV-3 and a second clade, containing only Brazilian sequences described in this study. All of the Brazilian sequences showed identity values greater than 97.7% when compared to each other. This is the first report of the occurrence of Cyprinid herpesvirus 3 in ornamental fish species in Brazil. These results in association with further studies of viral isolation and characterization can help in establishing effective surveillance and disease control program.
Collapse
Affiliation(s)
- Samara Rita de Lucca Maganha
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil.
| | | | | | - Sabrina Ribeiro de Almeida-Queiroz
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| | - Andrezza Maria Fernandes
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| | - Ricardo Luiz Moro de Sousa
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| |
Collapse
|
4
|
Tolo IE, Bajer PG, Wolf TM, Mor SK, Phelps NBD. Investigation of Cyprinid Herpesvirus 3 (CyHV-3) Disease Periods and Factors Influencing CyHV-3 Transmission in A Low Stocking Density Infection Trial. Animals (Basel) 2021; 12:ani12010002. [PMID: 35011108 PMCID: PMC8749781 DOI: 10.3390/ani12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Pathogens are the primary limitation to aquaculture production of fish and a major issue in consideration of the interface between cultured and wild populations of fishes worldwide. While rapid spread of fish pathogens between populations (wild or farmed) is generally anthropogenic and the result of trade, the mechanisms of transmission once a pathogen has been introduced to a fish population are not well understood. The most widespread pathogen impacting both aquaculture and wild populations of common carp (Cyprinus carpio, carp) is Cyprinid herpesvirus 3 (CyHV-3). To understand how CyHV-3 is transmitted in a population we conducted a series of infection trials, designed to determine the kinetics CyHV-3 infections, identify the contributions of direct and indirect forms of CyHV-3 transmission, and to determine the contributions of contact rate, viral load, pathogenicity, and contact type. We found that direct contact between fish was the primary mechanism of CyHV-3 transmission rather than transmission through contaminated water. Additionally, CyHV-3 transmission occurred primarily during the incubation period of CyHV-3, prior to the appearance of disease signs and disease-associated reduction in contact rate. Abstract Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive CyHV-3 transmission can clarify the importance of environmental disease vectors and is valuable for informing disease modeling efforts. To study the mechanisms and factors driving CyHV-3 transmission we conducted infection trials that determined the kinetics of KHVD and the contributions of direct and indirect forms of CyHV-3 transmission, as well as the contributions of contact rate, viral load, pathogenicity and contact type. The incubation period of KHVD was 5.88 + 1.75 days and the symptomatic period was 5.31 + 0.87 days. Direct transmission was determined to be the primary mechanism of CyHV-3 transmission (OR = 25.08, 95%CI = 10.73–99.99, p = 4.29 × 10−18) and transmission primarily occurred during the incubation period of KHVD. Direct transmission decreased in the symptomatic period of disease. Transmissibility of CyHV-3 and indirect transmission increased during the symptomatic period of disease, correlating with increased viral loads. Additionally, potential virulence-transmission tradeoffs and disease avoidance behaviors relevant to CyHV-3 transmission were identified.
Collapse
Affiliation(s)
- Isaiah E. Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Przemyslaw G. Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Tiffany M. Wolf
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Sunil K. Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Nicholas B. D. Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
5
|
Carps, Catla catla, Cirrhinus mrigala and Hypophthalmichthys molitrix Are Resistant to Experimental Infection with Tilapia Lake Virus (TiLV). FISHES 2021. [DOI: 10.3390/fishes6040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tilapia tilapinevirus, also known as tilapia lake virus (TiLV), is an emerging fish virus that primarily affects tilapines. However, the virus has also been detected in a few non-tilapines. As tilapia is generally farmed in polyculture systems along with carps in South Asian countries, there is a likelihood that TiLV-infected tilapia can transmit the virus to the co-cultured species. In view of the above, the susceptibility of three carp species, namely catla (Catla catla), mrigal (Cirrhinus mrigala) and silver carp (Hypophthalmichthys molitrix) was evaluated vis-à-vis tilapia, following experimental infection with TiLV. No clinical signs and histopathological alterations could be observed in carps. RT-qPCR revealed that TiLV copy numbers in liver and brain of all the three carps were almost negligible and did not show any increase with time, suggesting that the virus did not replicate in liver and brain, the target organs of TiLV. Further, TiLV could not be isolated from pooled liver and brain tissues of carps using permissive CFF cell line. On the contrary, in tilapia, typical clinical signs and histopathological lesions were observed and there was significant increase in TiLV copy number up to 6 days post-injection. Furthermore, the virus was successfully isolated from pooled liver and brain tissue of infected tilapia. From the above findings, it could be concluded that C. catla, C. mrigala and H. molitrix are resistant to TiLV infection and unlikely to be carriers for this virus.
Collapse
|
6
|
Susceptibility of Pimephales promelas and Carassius auratus to a strain of koi herpesvirus isolated from wild Cyprinus carpio in North America. Sci Rep 2021; 11:1985. [PMID: 33479424 PMCID: PMC7820613 DOI: 10.1038/s41598-021-81477-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Cyprinid herpesvirus-3 (CyHV-3, syn. koi herpesvirus) is an important pathogen worldwide and a common cause of mass mortality events of wild common carp (Cyprinus carpio) in North America, however, reference strains and genomes obtained from wild carp are not available. Additionally, it is unclear if fishes in North America are susceptible to CyHV-3 infection due to incomplete susceptibility testing. Here we present the first North American type strain and whole-genome sequence of CyHV-3 isolated from wild carp collected from a lake with a history and recent incidence of carp mortality. Additionally, the strain was used in an in-vivo infection model to test the susceptibility of a common native minnow (Pimephales promelas) and goldfish (Carrasius auratus) which is invasive in North America. Detection of CyHV-3 DNA was confirmed in the tissues of a single fathead minnow but the same tissues were negative for CyHV-3 mRNA and samples from exposed fathead minnows were negative on cell culture. There was no detection of CyHV-3 DNA or mRNA in goldfish throughout the experiment. CyHV-3 DNA in carp tissues was reproducibly accompanied by the detection of CyHV-3 mRNA and isolation on cell culture. Additionally, environmental CyHV-3 DNA was detected on all tank filters during the study. These findings suggest that fathead minnows and goldfish are not susceptible to CyHV-3 infection and that detection of CyHV-3 DNA alone in host susceptibility trials should be interpreted with caution.
Collapse
|
7
|
Ahmadivand S, Soltani M, Shokrpoor S, Rahmati-Holasoo H, El-Matbouli M, Taheri-Mirghaed A. Cyprinid herpesvirus 3 (CyHV-3) transmission and outbreaks in Iran: Detection and characterization in farmed common carp. Microb Pathog 2020; 149:104321. [PMID: 32534183 DOI: 10.1016/j.micpath.2020.104321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
This study shows the presence of Cyprinid Herpesvirus-3 (CyHV-3) in common carp (Cyprinus carpio) from Iranian carp farms with cumulative mortality up to 80% during 2015-2016. Pathological signs of disease such as gill necrosis, sunken eyes, and increased slime secretion on the skin and fins were observed in affected fish. The extensive fusion of secondary lamellae with necrotic cells, margination of chromatin, and formation of intranuclear inclusion bodies in gill tissues were also observed by histopathological examination. Most tubular epithelial cells and some hematopoietic cells showed intranuclear inclusion bodies in the kidney. The Iranian CyHV-3 isolates showed identity with Asian strains, and displayed the I++ II+ allele of the Asian lineage, as revealed by sequence analysis of the TK gene, Marker I, and Marker II. The detected isolates were also similar to those detected from koi in the same region of Iran, suggesting the probable transmission of CyHV-3 from ornamental to farmed cyprinids. This represents the first report of CyHV-3 from Iranian farmed common carp to the best of our knowledge.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran.
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia.
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Ali Taheri-Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| |
Collapse
|
8
|
Hu F, Li Y, Wang Q, Wang G, Zhu B, Wang Y, Zeng W, Yin J, Liu C, Bergmann SM, Shi C. Carbon nanotube-based DNA vaccine against koi herpesvirus given by intramuscular injection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:810-818. [PMID: 31743761 DOI: 10.1016/j.fsi.2019.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Koi herpesvirus (KHV) also named Cyprinid Herpesvirus 3 (CyHV-3) is one of the most threatening pathogens affecting common carp production as well as the valued ornamental koi carp. The current commercial vaccines available are costly and potentially cause severe stress caused by live virus. KHV ORF149 gene has been proved encoding one of the main immunogenic proteins for KHV. In this study, we coupled a plasmid expression vector for ORF149 to single walled carbon nanotubes (SWCNTs) for an anti-KHV vaccine. The vaccine conferred an 81.9% protection against intraperitoneal challenge with KHV. Importantly, SWCNTs as a promising vehicle can enhanced the protective effects 33.9% over that of the naked DNA vaccine at the same dose. The protection was longer and serum antibody production, enzyme activities and immune-related gene expression were all induced in fish vaccinated with the nanotube-DNA vaccine compared with the DNA alone. Thereby, this study demonstrates that the ORF149 DNA vaccine loaded onto SWCNTs as a novel vaccine might provide an effective method of coping with KHV disease using intra-muscular vaccination.
Collapse
Affiliation(s)
- Feng Hu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Weiwei Zeng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chun Liu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Sven M Bergmann
- German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| |
Collapse
|