1
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Guo S, Wan Q, Xu M, Chen M, Chen Z. Transcriptome analysis of host anti-Aeromonas hydrophila infection revealed the pathogenicity of A. hydrophila to American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109504. [PMID: 38508539 DOI: 10.1016/j.fsi.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| | - Qijuan Wan
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| |
Collapse
|
3
|
Xu M, Wang Y, Wan Q, Chen M, Guo S. RNA-seq analysis revealed the pathogenicity of Vibrio vulnificus to American eel (Anguilla rostrata) and the strategy of host anti-V. vulnificus infection. Microb Pathog 2024; 186:106498. [PMID: 38097116 DOI: 10.1016/j.micpath.2023.106498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.
Collapse
Affiliation(s)
- Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Yue Wang
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
4
|
Wang Y, Zhai S, Wan Q, Xu M, Chen M, Guo S. Pathogenicity of Edwardsiella anguillarum to American eels (Anguilla rostrata) and RNA-seq analysis of host immune response to the E. anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109042. [PMID: 37657556 DOI: 10.1016/j.fsi.2023.109042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Edwardsiella anguillarum is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-E. anguillarum infection remains uncertain. In this study, LD50 of E. anguillarum to American eels was determined and bacterial load in the liver and kidney of eels was assessed post the LD50 of E. anguillarum infection. The results showed that LD50 of E. anguillarum to American eels was determined to be 2.5 × 105 cfu/g body weight, and the bacterial load peaked at 36 and 72 h post the infection (hpi) in the kidney and liver, respectively. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes, as well as ultrastructural pathology in the kidney were charactered by acute nephritis, showing necrosis of the renal tubular epithelial cells, glomerular capillaries dilate, mitochondria swelling and ribosomes separate from the endoplasmic reticulum. Furthermore, the results of qRT-PCR revealed that 12 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 6 hub DEGs play essential role to the anti-E. anguillarum infection in American eels. Pathogenicity of E. anguillarum to American eels and hub genes related host anti- E. anguillarum infection were firstly reported in this study, shedding new light on our understanding of the E. anguillarum pathogenesis and the host immune response to the E. anguillarum infection strategies in gene transcript.
Collapse
Affiliation(s)
- Yue Wang
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
| |
Collapse
|
5
|
Yang BT, Zhao T, Li HJ, Liang ZL, Cong W, Kang YH. Lc-pPG-612-OmpU-CTB: A promising oral vaccine for protecting Carassius auratus against Vibrio mimicus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108973. [PMID: 37481101 DOI: 10.1016/j.fsi.2023.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Vibrio mimicus (V. mimicus) is known to cause severe bacterial diseases with high mortality rates in fish, resulting in significant economic losses in the global aquaculture industry. Therefore, the objective of this study was to develop a safe and effective vaccine for protecting Carassius auratus (C. auratus) against V. mimicus infection. Recombinant Lactobacillus casei (L. casei) strains, Lc-pPG-612-OmpU and Lc-pPG-612-OmpU-CTB (surface-displayed), were constructed using a L. casei strain (ATCC 393) as an antigen delivery carrier and the cholera toxin B subunit (CTB) as an adjuvant. The two recombinant strains of L. casei were administered to C. auratus via oral immunization, and the protective efficacy of the oral vaccines was assessed. The results demonstrated that oral immunization with the two strains significantly increased the levels of nonspecific immune indicators in C. auratus, including alkaline phosphatase (AKP), lysozyme (LYS), acid phosphatase (ACP), complement 3 (C3), complement 4 (C4), lectin, and superoxide dismutase (SOD). Moreover, the experiment groups exhibited significant increases in specific immunoglobulin M (IgM) antibodies against OmpU, as well as the transcription of immune-related genes (ie., IL-1β, TNF-α, IL-10, and TGF-β), when compared to the control groups. Following infection of C. auratus with V. mimicus, the mortality rate of the recombinant L. casei-treated fish was observed to be lower compared to the control group. This finding suggests that recombinant L. casei demonstrates effective protection against V. mimicus infection in C. auratus. Furthermore, the addition of the immune adjuvant CTB was found to induce a more robust adaptive and innate immune response in C. auratus, resulting in reduced mortality after infection with V. mimicus.
Collapse
Affiliation(s)
- Bin-Tong Yang
- Marine College, Shandong University, Weihai, 264209, China; Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang, 265100, China
| | - Tong Zhao
- Marine College, Shandong University, Weihai, 264209, China
| | - Hong-Jin Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Zhen-Lin Liang
- Marine College, Shandong University, Weihai, 264209, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, 264209, China
| | - Yuan-Huan Kang
- Marine College, Shandong University, Weihai, 264209, China; Shandong Key Laboratory of Animal Microecological Preparation, Tai'an, 271000, China.
| |
Collapse
|
6
|
Lin P, Xu M, Yang Q, Chen M, Guo S. Inoculation of Freund's adjuvant in European eel (Anguilla anguilla) revealed key KEGG pathways and DEGs of host anti-Edwardsiella anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108708. [PMID: 36997037 DOI: 10.1016/j.fsi.2023.108708] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Freund's complete (FCA) and incomplete adjuvants (FIA), generally applied in subunit fishery vaccine, have not been explored on the molecular mechanism of the nonspecific immune enhancement. In this study, we examined the RNA-seq in the spleen of European eel (Anguilla anguilla) inoculated with FCA and FIA (FCIA group) to elucidate the key KEGG pathways and differential expressed genes (DEGs) in the process of Edwardsiella anguillarum infection and A. anguilla anti-E. anguillarum infection using genome-wide transcriptome. After eels were challenged by E. anguillarum at 28 d post the first inoculation (dpi), compared to the control uninfected eels (Con group), the control infected eels (Con_inf group) showed severe pathological changes in the liver, kidney and spleen, although infected eels post the inoculation of FCIA (FCIA_inf group) also formed slight bleeding. Compared to the FCIA_inf group, there was more than 10 times colony forming unit (cfu) in the Con_inf group per 100 μg spleen, kidney or blood, and the relative percent survival (RPS) of eels was 44.4% in FCIA_inf vs Con_inf. Compared to the Con group, the SOD activity in the FCIA group increased significantly in the liver and spleen. Using high-throughput transcriptomics, DEGs were identified and 29 genes were verified using fluorescence real-time polymerase chain reaction (qRT-PCR). The result of DEGs clustering showed 9 samples in 3 groups of Con, FCIA and FCIA_inf were similar, contrast to distinct differences of 3 samples in the Con_inf group. We found 3795 up and 3548 down regulated DEGs in the compare of FCIA_inf vs Con_inf, of which 5 enriched KEGG pathways of "Lysosome", "Autophagy", "Apoptosis", "C-type lectin receptor signaling" and "Insulin signaling" were ascertained, and 26 of 30 top GO terms in the compare were significantly enriched. Finally, protein-protein interactions between the DEGs of the 5 KEGG pathways and other DEGs were explored using Cytoscape 3.9.1. The compare of FCIA_inf vs Con_inf showed 110 DEGs from the 5 pathways and 718 DEGs from other pathways formed total of 9747° in a network, of which 9 hub DEGs play vital roles in anti-infection or apoptosis. Together, the interaction networks revealed that 9 DEGs involved in the 5 pathways underlies the key process of A. anguilla anti-E. anguillarum infection or host cell apoptosis.
Collapse
Affiliation(s)
- Peng Lin
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Ming Xu
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Qiuhua Yang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Minxia Chen
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Songlin Guo
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China.
| |
Collapse
|
7
|
Wu L, Yin Z, Zheng Z, Tang Y, Guo S. Comprehensive Relationship Analysis of the Long Noncoding RNAs (lncRNAs) and the Target mRNAs in Response to the Infection of Edwardsiella anguillarum in European eel (Anguilla anguilla) Inoculated with Freund's Adjuvant. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:956-968. [PMID: 35995892 DOI: 10.1007/s10126-022-10157-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Freund's complete adjuvant (FCA) and incomplete adjuvant (FIA), generally applied in subunit fishery vaccine, have not been explored on the molecular mechanism of the non-specific immune enhancement. As long noncoding RNAs (lncRNAs) play vital regulating roles in various biological activities, in this study, we examined the genome-wide expression of transcripts in the liver of European eel (Anguilla anguilla, Aa) inoculated with FCA and FIA (FCIA) to elucidate the regulators of lncRNAs in the process of Edwardsiella anguillarum (Ea) infection and Aa anti-Ea infection using strand-specific RNA-seq. After eels were challenged by Ea at 28 days post the first inoculation (dpi), compared to the control uninfected eels (Li group), the control infected eels (Con_Li group) showed severe bleeding, hepatocyte atrophy, and thrombi formed in the hepatic vessels of the liver, although eels inoculated with FCIA (FCIA_Li group) also formed slight thrombi in the hepatic vessels. Compared to the FCIA_Li group, there was about 10 times colony-forming unit (cfu) in the Con_Li group per 100 μg liver tissue, and the relative percent survival (RPS) of eels was 50% in FCIA_Li vs Con_Li. Using high-throughput transcriptomics, differential expressed genes (DEGs) and transcripts were identified and the results were verified using fluorescence real-time polymerase chain reaction (qRT-PCR). Interactions between the differential expressed lncRNAs (DE-lncRNAs) and the target DEGs were explored using Cytoscape according to their co-expression and co-location relationship. We found 13,499 lncRNAs (10,176 annotated and 3423 novel lncRNAs) between 3 comparisons of Con_Li vs Li, FCIA_Li vs Li, and FCIA_Li vs Con_Li, of which 111, 110, and 129 DE-lncRNAs were ascertained. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs targeted by DE-lncRNAs revealed these DEGs mainly involved in single-organism cellular process in BP, membrane in CC and binding in MF, and KEGG pathways showed that the target DEGs in co-expression and co-location enriched in cell adhesion molecules. Finally, 118 DE-lncRNAs target 1161 DEGs were involved in an interaction network of 8474 co-expression and 333 co-location-related links, of which 16 DE-lncRNAs play vital roles in anti-Ea infection. Taken together, the interaction networks revealed that DE-lncRNAs underlies the process of Ea infection and Aa anti-Ea infection.
Collapse
Affiliation(s)
- Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, 361021, China
| | - Zhijie Yin
- Fisheries College, Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Jimei University, Xiamen, 361021, China
| | - Zhijin Zheng
- Fisheries College, Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Jimei University, Xiamen, 361021, China
| | - Yijun Tang
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI, USA
| | - Songlin Guo
- Fisheries College, Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
8
|
Parchemin C, Tapissier-Bontemps N, Sasal P, Faliex E. Anguilla sp. diseases diagnoses and treatments: The ideal methods at the crossroads of conservation and aquaculture purposes. JOURNAL OF FISH DISEASES 2022; 45:943-969. [PMID: 35526273 DOI: 10.1111/jfd.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Anguilla anguilla, A. japonica and A. rostrata are the most fished and consumed eel species. However, these species are Critically Endangered, Endangered and Endangered, respectively. A combination of factors is thought to be responsible for their decline including fisheries, climate change, habitat destruction, barriers to migration, pollution and pathogens. Among them, viruses, bacteria and parasites are causing weakening of wild eels and serious economic losses for fishermen and eel farmers. Early detection of pathogens is essential to provide appropriate responses both for conservation reasons and to limit economic losses. Classic diagnosis approaches are time consuming and invasive and usual treatments, for example, antipathogenic substances are becoming obsolete because of pathogen resistance and environmental impact problems. The need for early and non-invasive diagnostic methods as well as effective and environmentally friendly treatments has increased. Vaccine development and diet supplementation have known a growing interest since their use could allow prevention of diseases. In this review, we summarize the main pathogens-viruses, bacteria and parasites-of the three northern temperate eel species, the methods used to detect these pathogens and the different treatments used. We discussed and highlighted the need for non-invasive, rapid and efficient detection methods, as well as effective and environmentally friendly treatments for both conservation and aquaculture purposes.
Collapse
Affiliation(s)
- Christelle Parchemin
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), Université de Perpignan, Perpignan Cedex, France
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), Université de Perpignan, Perpignan Cedex, France
| | - Nathalie Tapissier-Bontemps
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), Université de Perpignan, Perpignan Cedex, France
| | - Pierre Sasal
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), Université de Perpignan, Perpignan Cedex, France
| | - Elisabeth Faliex
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), Université de Perpignan, Perpignan Cedex, France
| |
Collapse
|
9
|
Xiao Y, Wu L, He L, Tang Y, Guo S, Zhai S. Transcriptomic analysis using dual RNA sequencing revealed a Pathogen-Host interaction after Edwardsiella anguillarum infection in European eel (Anguilla anguilla). FISH & SHELLFISH IMMUNOLOGY 2022; 120:745-757. [PMID: 34974154 DOI: 10.1016/j.fsi.2021.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 05/26/2023]
Abstract
Many studies have explored differentially expressed genes (DEGs) between some pathogens and hosts, but no study has focused on the interaction of DEGs between Edwardsiella anguillarum (Ea) and Anguilla anguilla (Aa). In this study, we examined the interactions of DEGs during Ea infection and Aa anti-infection processes by dual RNA sequencing. Total RNA from in vitro and in vivo (Aa liver) Ea culture was extracted. Using high-throughput transcriptomics, significant DEGs that were expressed between Ea cultured in vitro versus in vivo and those in the liver of the infected group versus control group were identified. Protein-protein interactions between the pathogen and host were explored using Cytoscape according to the HPIDB 3.0 interaction transcription database. The results showed that the liver in the infection group presented with severe bleeding and a large number of thrombi in the hepatic vessels. We found 490 upregulated and 398 downregulated DEGs of Ea in vivo versus Ea cultured in vitro, and 2177 upregulated and 970 downregulated genes in the liver of the infected eels. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the pathogen DEGs revealed that the upregulated genes were mainly enriched in migration, colonization, biofilm formation, and significantly enriched in ABC transport and quorum sensing; the downregulated genes were mainly involved in metabolism, information transduction, organelle formation, enzyme catalysis, molecular transport, and binding. GO of the host DEGs showed that metabolic process, catalytic activity, single organism metabolic process, small molecule binding, nucleotide binding, nucleotide phosphate binding, and anion binding were markedly enriched. Finally, we found that 79 Ea and 148 Aa proteins encoded by these DEGs were involved in an interaction network, and some pathogen (DegP, gcvP, infC, carB, rpoC, trpD, sthA, and FhuB) and host proteins (MANBA, STAT1, ETS2, ZEP1, TKT1, NMI and RBPMS) appear to play crucial roles in infection. Thus, determining the interaction networks revealed crucial molecular mechanisms underlying the process of pathogenic infection and host anti-infection.
Collapse
Affiliation(s)
- Yiqun Xiao
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, 361021, China
| | - Le He
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Yijun Tang
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Blvd, Oshkosh, WI, USA
| | - Songlin Guo
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China.
| | - Shaowei Zhai
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China.
| |
Collapse
|