1
|
Armando F, Pigoli C, Gambini M, Ghidelli A, Ghisleni G, Corradi A, Passeri B, Caniatti M, Grieco V, Baumgärtner W, Puff C. Peripheral Nerve Sheath Tumors Resembling Human Atypical Neurofibroma in Goldfish ( Carassius auratus, Linnaeus, 1758). Animals (Basel) 2021; 11:ani11092621. [PMID: 34573587 PMCID: PMC8467327 DOI: 10.3390/ani11092621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary In animals, especially in fish, dermal neoplasms are a common finding. A distinction between peripheral nerve sheath tumors (PNSTs) and other spindle cell tumors (SCTs) is not always possible when relying exclusively on routine cytological and histopathological findings. The current study aims to determine a minimal subset of stains required to correctly identify PNSTs in goldfish and describes, in detail, six dermal nodules that resemble atypical neurofibroma in humans. Interestingly, muscular and fibroblastic tumors were excluded using Azan trichrome staining, while Alcian blue and Gomori’s reticulin stains revealed the presence of intratumoral areas of mucins and basement membrane fragments, respectively. In addition, PAS and PAS with diastase pretreatment confirmed the latter finding and revealed intra- and extracellular glycogen granules. Immunohistochemistry displayed reactivity for S100 protein, CNPase, and phosphorylated and non-phosphorylated neurofilament-positive axons. Altogether, these findings suggested that Azan trichrome staining, Gomori’s reticulin staining, and immunohistochemistry for S100 protein and CNPase represent a useful set of stains to identify and characterize PNSTs in goldfish. Abstract Skin spindle cell tumors (SSTs) frequently occur in fishes, with peripheral nerve sheath tumors (PNSTs) being the most commonly reported neoplasms in goldfish. However, distinguishing PNSTs from other SCTs is not always possible when relying exclusively on routine cytological and histopathological findings. Therefore, the aim of this study is to characterize six skin nodules, resembling atypical neurofibromas in humans, found in six cohabiting goldfish (Carassius auratus), and to determine a minimal subset of special stains required to correctly identify PNSTs in this species. Routine cytology and histopathology were indicative of an SCT with nuclear atypia in all cases, with randomly distributed areas of hypercellularity and loss of neurofibroma architecture. Muscular and fibroblastic tumors were excluded using Azan trichrome staining. Alcian blue and Gomori’s reticulin stains revealed the presence of intratumoral areas of glycosaminoglycans or mucins and basement membrane fragments, respectively. PAS and PAS–diastase stains confirmed the latter finding and revealed intra- and extracellular glycogen granules. Immunohistochemistry displayed multifocal, randomly distributed aggregates of neoplastic cells positive for S100 protein and CNPase, intermingled with phosphorylated and non-phosphorylated neurofilament-positive axons. Collectively, these findings are consistent with a PNST resembling atypical neurofibroma in humans, an entity not previously reported in goldfish, and suggest that Azan trichrome staining, reticulin staining, and immunohistochemistry for S100 protein and CNPase represent a useful set of special stains to identify and characterize PNSTs in this species.
Collapse
Affiliation(s)
- Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.G.); (C.P.)
- Pathology Unit, Department of Veterinary Medicine, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (A.C.); (B.P.)
| | - Claudio Pigoli
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.P.); (G.G.); (M.C.); (V.G.)
- Laboratorio di Istologia, Sede Territoriale di Milano, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 20133 Milano, Italy
| | - Matteo Gambini
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.G.); (C.P.)
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.P.); (G.G.); (M.C.); (V.G.)
| | - Andrea Ghidelli
- Department of Veterinary Medicine, University of Parma, Strada del Taglio 10, 43126 Parma, Italy;
| | - Gabriele Ghisleni
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.P.); (G.G.); (M.C.); (V.G.)
- Biessea Laboratorio Analisi Veterinarie, Via Amedeo D’Aosta 7, 20129 Milano, Italy
| | - Attilio Corradi
- Pathology Unit, Department of Veterinary Medicine, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (A.C.); (B.P.)
| | - Benedetta Passeri
- Pathology Unit, Department of Veterinary Medicine, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (A.C.); (B.P.)
| | - Mario Caniatti
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.P.); (G.G.); (M.C.); (V.G.)
| | - Valeria Grieco
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.P.); (G.G.); (M.C.); (V.G.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.G.); (C.P.)
- Correspondence:
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.G.); (C.P.)
| |
Collapse
|