1
|
Jiang X, Gao M, Ding Y, Wang J, Song Y, Xiao H, Kong X. Interleukin-17B in common carp (Cyprinus carpio L.): Molecular cloning and immune effects as immune adjuvant of Aeromonas veronii formalin-killed vaccine. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109832. [PMID: 39147176 DOI: 10.1016/j.fsi.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The interleukin-17 (IL-17) family of cytokines is critical for host defense responses and mediates different pro- or anti-inflammatory mediators through different signaling pathways. However, the function of the related family member, IL-17B, in teleosts is poorly understood. In the present study, an IL-17B homolog (CcIL-17B) in common carp (Cyprinus carpio) was identified, and sequence analysis showed that CcIL-17B had eight conserved cysteine residues, four of which could form two pairs of disulfide bonds, which in turn formed a ring structure composed of nine amino acids (aa). The deduced aa sequences of CcIL-17B shared 35.79-92.93 % identify with known homologs. The expression patterns were characterized in healthy and bacteria-infected carp. In healthy carp, IL-17B mRNA was highly expressed in the spleen, whereas Aeromonas veronii effectively induced CcIL-17B expression in the liver, head, kidney, gills, and intestine. The recombinant protein rCcIL-17B could regulate the expression levels of inflammatory cytokines (such as IL-1β, IL-6, TNF-α, and IFN-γ) in primary cultured head kidney leukocytes in vitro. As an adjuvant for the formalin-killed A. veronii (FKA) vaccine, rCcIL-17B induced the production of specific antibodies more rapidly and effectively than Freund's complete adjuvant (FCA). The results of the challenge experiments showed that the relative percent survival (RPS) after vaccination with rCcIL-17B was 78.13 %. This percentage was significantly elevated compared to that observed in the alternative experimental groups (62.5 % and 37.5 %, respectively). Additionally, the bacterial loads in the spleen of the rCcIL-17B + FKA group were significantly lower than those in the control group from 12 h to 48 h after bacterial infection. Furthermore, histological analysis showed that the epithelial cells were largely intact, and the striated border structure was complete in the intestine of rCcIL-17B + FKA group. Collectively, our results demonstrate that CcIL-17B plays a crucial role in eliciting immune responses and evokes a higher RPS against A. veronii challenge compared to the traditional adjuvant FCA, indicating that rCcIL-17B is a promising vaccine adjuvant for controlling A. veronii infection.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
2
|
Ruiz A, Scicchitano D, Palladino G, Nanetti E, Candela M, Furones D, Sanahuja I, Carbó R, Gisbert E, Andree KB. Microbiome study of a coupled aquaponic system: unveiling the independency of bacterial communities and their beneficial influences among different compartments. Sci Rep 2023; 13:19704. [PMID: 37952071 PMCID: PMC10640640 DOI: 10.1038/s41598-023-47081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
To understand the microbiome composition and interplay among bacterial communities in different compartments of a coupled freshwater aquaponics system growing flathead grey mullet (Mugil cephalus) and lettuces (Lactuca sativa), 16S rRNA gene amplicon sequencing of the V3-V4 region was analysed from each compartment (fish intestine, water from the sedimentation tank, bioballs from the biological filter, water and biofilm from the hydroponic unit, and lettuce roots). The bacterial communities of each sample group showed a stable diversity during all the trial, except for the fish gut microbiota, which displayed lower alpha diversity values. Regarding beta diversity, the structure of bacterial communities belonging to the biofilm adhering to the hydroponic tank walls, bioballs, and lettuce roots resembled each other (weighted and unweighted UniFrac distances), while bacteria from water samples also clustered together. However, both of the above-mentioned bacterial communities did not resemble those of fish gut. We found a low or almost null number of shared Amplicon Sequence Variants (ASVs) among sampled groups which indicated that each compartment worked as an independent microbiome. Regarding fish health and food safety, the microbiome profile did not reveal neither fish pathogens nor bacterial species potentially pathogenic for food health, highlighting the safety of this sustainable food production system.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Dolors Furones
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Ignasi Sanahuja
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Ricard Carbó
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain.
| | - Karl B Andree
- Aquaculture Program, Institute for Research and Technology in Agroalimentaries (IRTA), Ctra. Poble Nou. Km 5.5, 43540, Ràpita, Spain
| |
Collapse
|
3
|
Neupane S, Rao S, Yan WX, Wang PC, Chen SC. First identification, molecular characterization, and pathogenicity assessment of Lactococcus garvieae isolated from cultured pompano in Taiwan. JOURNAL OF FISH DISEASES 2023; 46:1295-1309. [PMID: 37578999 DOI: 10.1111/jfd.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Lactococcosis, caused by Lactococcus garvieae, is an acute hemorrhagic septicemia in fish recorded in marine and freshwater aquaculture during the summer months. In 2020-2021, several sea cage Pompano farms recorded sudden fish mortality events. Based on the results of phenotypic and biochemical tests, L. garvieae was predicted to be the cause. PCR with L. garvieae specific primers (pLG1 and pLG2) targeting the 16S rRNA region further confirmed the etiological agent as L. garvieae after amplifying an 1100 base pairs (bp) product. Furthermore, the 16S rRNA sequences of the two representative strains (AOD109-196-2B and AOD110-215-2B) shared 99.81% identity with L. garvieae (GenBank accession number: MT597707.1). The genetic profiles of the strains were classified using pulsed-field gel electrophoresis after digestion with SmaI and ApaI, which clustered our strains under the same pulsotype. Multiplex PCR targeting the capsule gene cluster and serotype-specific PCR collectively showed that the strains were non-capsulated; thus, they belonged to serotype I. An experimental infection was designed to fulfil Koch's postulates by infecting healthy Pompano with case-driven L. garvieae strains (AOD109-196-2B and AOD110-215-2B) with a cumulative mortality of 70%. Overall, L. garvieae infection in Pompano emphasizes the need for better monitoring and control procedures in aquaculture settings.
Collapse
Affiliation(s)
- Sandip Neupane
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wei-Xiao Yan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
4
|
de Ruyter T, Littman E, Yazdi Z, Adkison M, Camus A, Yun S, Welch TJ, Keleher WR, Soto E. Comparative Evaluation of Booster Vaccine Efficacy by Intracoelomic Injection and Immersion with a Whole-Cell Killed Vaccine against Lactococcus petauri Infection in Rainbow Trout ( Oncorhynchus mykiss). Pathogens 2023; 12:pathogens12050632. [PMID: 37242302 DOI: 10.3390/pathogens12050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/28/2023] Open
Abstract
Lactococcus petauri is an important emergent bacterial pathogen of salmonids in the USA. The purpose of this study was to evaluate the protection conferred to rainbow trout (Oncorhynchus mykiss) against L. petauri by formalin-killed vaccines in immersion and injectable forms, as well as the enhanced protection afforded by booster vaccination. In the first challenge, fish were immunized via intracoelomic injection (IC) or immersion (Imm) routes alone. Approximately 418 degree days (Temperature in degree Celsius × days post-immunization) (dd) Imm, or 622 dd IC post-vaccination, fish were challenged via IC with wild-type L. petauri. In the second experiment, initial Imm vaccination was followed by booster vaccination via Imm or IC routes 273 dd post-immunization along with appropriate PBS controls. The various vaccination protocol efficacies were evaluated by challenging fish with L. petauri by cohabitation with diseased fish 399 dd post-booster administration. A relative percent survival (RPS) of 89.5% and 28% was recorded in the IC and Imm single immunization treatments, respectively. In the second study, an RPS of 97.5%, 10.2%, 2.6% and -10.1% plus approximately 0%, 50%, 20%, and 30% bacterial persistence was recorded in the Imm immunized + IC boosted, Imm immunized + mock IC boosted, Imm immunized + Imm boosted, and Imm immunized + mock Imm boosted treatments, respectively. Only the Imm immunized + IC injection boosted treatments provided significant protection when compared to unvaccinated and challenged treatments (p < 0.05). In conclusion, although both Imm and IC vaccines appear safe for trout, the inactivated Imm vaccines seem to provide only mild and temporary protection against lactococcosis; whereas IC immunized trout develop a significantly stronger protective response in both challenges.
Collapse
Affiliation(s)
- Tryssa de Ruyter
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Littman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Mark Adkison
- California Department of Fish and Wildlife, Rancho Cordova, CA 95670, USA
| | - Alvin Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan Yun
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Timothy J Welch
- National Center for Cool and Coldwater Aquaculture, Kearneysville, WV 25430, USA
| | | | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Rao S, Chen MY, Sudpraseart C, Lin P, Yoshida T, Wang PC, Chen SC. Genotyping and phenotyping of Lactococcus garvieae isolates from fish by pulse-field gel electrophoresis (PFGE) and electron microscopy indicate geographical and capsular variations. JOURNAL OF FISH DISEASES 2022; 45:771-781. [PMID: 35235703 DOI: 10.1111/jfd.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Lactococcus garvieae is the etiological agent of Lactococcosis, an evolving disease affecting many fish species and causing significant economic losses worldwide. Assessing pathogen relatedness and bacterial population structure is critical for determining the epidemiology of L. garvieae infections and in establishing effective pathogen management methods. The previously published morphological and genetic studies point to a clonal population structure, as seen in other fish bacteria. In the present study, the pulsed-field gel electrophoresis (PFGE) method was utilized to define a population of 41 Taiwanese isolates from outbreaks with comparisons to four well-characterized non-Taiwanese isolates previously published. Two restriction enzymes (ApaI and SmaI) were utilized individually for PFGE analysis (cut-off value = 90.0%), revealing genetic heterogeneity across L. garvieae isolates, with ApaI and SmaI yielding 12 and seven distinct PFGE band patterns, respectively. The phylogenic analysis using internal transcribed spacer region clustered all L. garvieae isolates in the same clad. Furthermore, the electron microscopic results confirmed the absence of capsular gene cluster (CGC) in previously characterized Taiwanese vaccine strain (S3) from grey mullet. Overall, our findings emphasize the importance of analysing the morphological and genetic diversity in L. garvieae being correlated for proper taxonomic classification in vaccine strain selection and epidemiological studies.
Collapse
Affiliation(s)
- Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mei-Yun Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chiranan Sudpraseart
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Peiry Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Terutoyo Yoshida
- Faculty of Agriculture, Department of Marine Biology and Environmental Sciences, Miyazaki University, Miyazaki, Japan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
7
|
Su FJ, Chen MM. Protective Efficacy of Novel Oral Biofilm Vaccines against Lactococcus garvieae Infection in Mullet, Mugil cephalus. Vaccines (Basel) 2021; 9:vaccines9080844. [PMID: 34451969 PMCID: PMC8402525 DOI: 10.3390/vaccines9080844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Lactococcus garvieae (L. garvieae) is an important pathogen that causes enormous economic losses in both marine and freshwater aquaculture. At present, antibiotics are the only option for farmers to reduce the losses caused by L. garvieae. However, the usage of antibiotics leads to environmental pollution and the production of drug-resistant strains of bacteria. Therefore, vaccination is preferred as an alternative method to prevent infectious diseases. In this study, we describe an effective approach to the production of an oral biofilm vaccine, using bacteria grown on chitosan particles to form biofilms, and thus providing an inactive pathogen that enhances the immune response in fish. We observed the formation of a biofilm on chitosan particles and administered the novel oral biofilm vaccine to fish. We analyzed the immune responses, including antibody production, phagocytic ability, albumin/globulin ratio and immune-related genes, of vaccinated and control groups of black mullet. Our results show that the phagocytic ability of the biofilm vaccine group was 84%, which is significantly higher than that of the control group, and the antibody production in this group was significantly higher compared with the other group. The mRNA expression levels of immune-related genes (TLR2, IL-1β, TNF-α) were significantly upregulated in the spleen after vaccination. In challenge experiments, the relative percent survival (RPS) was 77% in the biofilm vaccine group, 18% in the whole-cell vaccine group, and 0% in the chitosan particle group at 32 days post-vaccination. In addition, we also found that the relative percent survival (RPS) at 1 day post-vaccination was 74% in the biofilm vaccine group, 42% in the whole-cell vaccine group, and 26% in the chitosan particle group. In both long-term and short-term challenge experiments, the viability of the biofilm vaccine group was significantly higher than that of the whole-cell, chitosan particle and PBS groups. We conclude that based on its protective effect, the L. garvieae biofilm vaccine is better than the whole-cell vaccine when challenged several weeks after vaccination. In addition, the biofilm vaccine also has a greater protective effect than the whole-cell vaccine when challenged immediately after vaccination. Therefore, the biofilm vaccine might represent a novel method for the prevention and treatment of L. garvieae infection.
Collapse
|
8
|
Löffler P. Review: Vaccine Myth-Buster - Cleaning Up With Prejudices and Dangerous Misinformation. Front Immunol 2021; 12:663280. [PMID: 34177902 PMCID: PMC8222972 DOI: 10.3389/fimmu.2021.663280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Although vaccines have already saved and will continue to save millions of lives, they are under attack. Vaccine safety is the main target of criticism. The rapid distribution of false information, or even conspiracy theories on the internet has tremendously favored vaccine hesitancy. The World Health Organization (WHO) named vaccine hesitancy one of the top ten threats to global health in 2019. Parents and patients have several concerns about vaccine safety, of which the ubiquitous anxieties include inactivating agents, adjuvants, preservatives, or new technologies such as genetic vaccines. In general, increasing doubts concerning side effects have been observed, which may lead to an increasing mistrust of scientific results and thus, the scientific method. Hence, this review targets five topics concerning vaccines and reviews current scientific publications in order to summarize the available information refuting conspiracy theories and myths about vaccination. The topics have been selected based on the author's personal perception of the most frequently occurring safety controversies: the inactivation agent formaldehyde, the adjuvant aluminum, the preservative mercury, the mistakenly-drawn correlation between vaccines and autism and genetic vaccines. The scientific literature shows that vaccine safety is constantly studied. Furthermore, the literature does not support the allegations that vaccines may cause a serious threat to general human life. The author suggests that more researchers explaining their research ideas, methods and results publicly could strengthen the general confidence in science. In general, vaccines present one of the safest and most cost-effective medications and none of the targeted topics raised serious health concerns.
Collapse
Affiliation(s)
- Paul Löffler
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
9
|
Rao S, Pham TH, Poudyal S, Cheng LW, Nazareth SC, Wang PC, Chen SC. First report on genetic characterization, cell-surface properties and pathogenicity of Lactococcus garvieae, emerging pathogen isolated from cage-cultured cobia (Rachycentron canadum). Transbound Emerg Dis 2021; 69:1197-1211. [PMID: 33759359 DOI: 10.1111/tbed.14083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/24/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
The diseased cage-cultured cobia (Rachycentron canadum) displayed clinical signs, haemorrhagic eyes, dorsal darkness and gross pathological lesions, enlargement of spleen and liver. Haemorrhages were found in brain, heart and liver with cumulative mortality rates ranging from 20% to 50%. Extensive congestion in the heart, liver, spleen, kidney and brain was observed histopathologically. Epicarditis and meningitis were also revealed in diseased cobia. All isolates recovered from the organs (liver, spleen, head kidney, posterior kidney, brain and muscle) of cobia were found to be gram-positive, non-motile, ovoid cocci, short-chain-forming (diplococci) and α-haemolytic. The API 32 strep system together with the polymerase chain reaction assay for species-specific primers (pLG1 and pLG2) and the internal transcribed spacer (ITS) region (G1 and L1 primers) confirmed all four selected isolates as Lactococcus garvieae. Partial 16S rDNA nucleotide sequence (~1,100 bp) of one representative L. garvieae isolate AOD109191 (GenBank accession number, MW328528.1) shared 99.9% identities with the 16S rDNA nucleotide sequence of L. garvieae (GenBank accession numbers: MT604790.1). Transmission electron microscopy (TEM) evaluation of one representative L. garvieae isolate (AOD109191) and the results of multiplex PCR did not reveal the presence of the capsular gene cluster (CGC), thus categorizing the isolate as the KG+ phenotype. Capsule staining and TEM observations confirmed the presence of a hyaluronic acid-like capsule, a possible virulence factor in KG+ phenotype L. garvieae isolates. The pathogenic potential of the representative isolate (AOD109191) was assessed through intraperitoneal injection challenges in cobia. The gross lesions and histopathological changes found in experimentally infected cobia were similar to those seen in naturally infected fish. This is the first report that confirms L. garvieae-induced 'warm water lactococcsis' can cause outbreaks of diseases in cage-cultured cobia.
Collapse
Affiliation(s)
- Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Trung Hieu Pham
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sandra Celenia Nazareth
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|