Abstract
Finfish aquaculture in freshwater and marine environments is continuously expanding globally, and the potential for a substantial further increase is well documented. The industry is supplying fish products for human consumption to the same extent as capture fisheries, and new fish species for domestication are still being selected by the industry. The challenge faced by all aquacultured species, classical and novel, is the range of pathogens associated with each new fish type. A fish host in its natural environment carries a series of more or less specific parasites (specialists and generalists). Some of these show a marked ability to propagate in aquaculture settings. They may then elicit disease when infection intensities in the confined aquaculture environment reach high levels. In addition, the risk of transmission of parasites from aquaculture enterprises to wild fish stocks adds to the parasitic challenge. Control programmes of various kinds are needed and these may include chemotherapeutants and medicines as the farmer's first and convenient choice, but mechanical, biological, immunological and genetic control methods are available solutions. New methods are still to be developed by scrutinizing the life cycle of each particular parasite species and pin-pointing the vulnerable stage to be targeted. As parasites exhibit a huge potential for adaptation to environmental changes, one must realize that only one approach rarely is sufficient. The present work therefore elaborates on and advocates for implementation of integrated control strategies for diseases caused by protozoan and metazoan parasites.
Collapse