1
|
Investigation of cold atmospheric plasma effects on functional and physicochemical properties of wheat germ protein isolate. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
2
|
Alavi F, Ciftci O. Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
3
|
Du K, Tian S, Chen H, Gao S, Dong X, Yan F. Application of enzymes in the preparation of wheat germ polypeptides and their biological activities. Front Nutr 2022; 9:943950. [PMID: 35923206 PMCID: PMC9341326 DOI: 10.3389/fnut.2022.943950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Wheat germ, a byproduct of wheat industrial processing, contains 30% protein and is a comprehensive source of plant-based protein. But a large amount of wheat germs are disposed of as waste every year. Wheat germ protein can be hydrolyzed into polypeptides with antioxidant, antihypertensive, anti-tumor, bacteriostatic and other activities. At present, researches on the hydrolysis of wheat germ protein and the preparation of bioactive peptides from wheat germ protein have attracted increasing attentions. However, the traditional protein hydrolysis method, protease hydrolysis, can no longer meet the market's needs for efficient production. Various auxiliary means, such as ultrasound, microwave and membrane separation, were applied to boost the yield and biological activity of wheat germ peptides by enzymatic hydrolysis. Under ultrasound and microwave, the protein structure may expand to increase the binding sites between enzyme and substrate and promote hydrolysis efficiency. Membrane separation is applied to separate products from enzymatic hydrolysate to reduce the inhibitory effect of the product on the hydrolysis reaction. The paper reviewed the hydrolysis methods of wheat germ protein and summarized the biological activity of wheat germ peptides to provide references for further study of wheat germ peptides.
Collapse
Affiliation(s)
- Ke Du
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- *Correspondence: Shuangqi Tian
| | - Hu Chen
- Kemen Noodle Manufacturing Co., Ltd., Changsha, China
| | - Sensen Gao
- Kemen Noodle Manufacturing Co., Ltd., Changsha, China
| | | | - Feng Yan
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Quaisie J, Ma H, Guo Y, Tuly JA, Igbokwe CJ, Ekumah JN, Akpabli-Tsigbe NDK, Yanhua D, Liu D. Highly stable, antihypertensive, and antioxidative peptide production from Apostichopus japonicus by integrated enzymatic membrane reactor and nanofilter-purification mechanism. Food Funct 2022; 13:2306-2322. [PMID: 35142318 DOI: 10.1039/d1fo02779d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzymatic hydrolysis-offline and membrane separation (EH-offline MS), enzymatic membrane reactor (EMR) (various operational modes), and conjoined nanofilter-purification (desalination) were used to produce highly stable antihypertensive and antioxidative peptides from ultrasonic-slurry viscosity reduced sea cucumber (A. japonicus) protein. The adoption of the optimum batch parameters by EMR-gradient diafiltration feeding (GDF), water feeding, and substrate feeding ensured a significant (p < 0.05) enhancement in protein conversion degree (PCD) by 60.39, 46.69, and 23.33%, respectively, over the conventional EH-offline MS. Also, the antihypertensive activity (ACE-inhibitory potency) of the peptides produced was in the order EMR-GDF > substrate feeding > water feeding > batch process > EH-offline MS. The EMR-GDF and nanofilter-purification produced highly digestible peptides with ACE-inhibition activities of 79.44% and 77.57% for gastric and gastrointestinal digests, respectively. Peptides with molecular weights of 1000-500 Da and 500 Da significantly contributed to the antihypertensive potency of desalinated peptides. In vitro simulated peptides showed a significant increase in the hydroxyl radical scavenging activity for gastric (77.27%) and gastrointestinal (85.32%) digests. The antioxidative stability of the produced peptides was least affected by high-temperature storage. The high arginine (Arg) and hydrophobic amino acid (HAA) content of the peptides resulted in their improved digestibility. Therefore, conjoined EMR-GDF and nanofilter-purification in the production of highly stable desalinated bioactive peptides for industrial applications could be a viable alternative.
Collapse
Affiliation(s)
- Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China. .,Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, Zhenjiang, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China. .,Department of food science and technology, University of Nigeria Nsukka, Enugu State, Nigeria
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | | | - Ding Yanhua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| |
Collapse
|
5
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Fan Y, Yu Z, Zhao W, Ding L, Zheng F, Li J, Liu J. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|