Aruva S, Dutta S, Moses JA, C A. Empirical characterization of hydration behavior of Indian paddy varieties by physicochemical characterization and kinetic studies.
J Food Sci 2020;
85:3303-3312. [PMID:
32895940 DOI:
10.1111/1750-3841.15441]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022]
Abstract
Temperature is an important factor in the determination of hydration kinetics in paddy, and it varies with variety. To understand this hydration behavior, the current study analyses the hydration kinetics of 12 different paddy varieties of India that were exposed to different soaking temperatures. The protein content of the paddy samples was found to be in the range of 6.13 to 9.19%; whereas, starch content was between 67.79 and 84.88%. The physicochemical composition of paddy varieties as well as variation in time-temperature of hydration was found to be decisive in ascertaining the hydration behavior. An increased hydration rate was observed with increasing hydration temperature as well as with higher amylose content of paddy. Among the varieties studied, the ratio of amylose to amylopectin was between 0.37 and 0.77. For all samples, the gelatinization temperature was in the range of 65.60 to 83.10 °C, which in turn was negatively correlated with amylose content, and influenced the hydration behavior of paddy. The optimum time-temperature condition range for hydration for each paddy variety was between 50 and 60°C for 2 to 3.5 hr, depending upon the variety. The activation energy for the paddy samples in this investigation was found to be in the range of 8.70 to 23.10 kJ/mol. The kinetic modeling of hydration was conducted using Peleg's model, with a good fit. The data indicated that with increment in hydration temperature, the rate of hydration was enhanced in all varieties with a decrease in the Peleg's rate constant (K1 ) and capacity constant (K2 ). These constants indicate a direct temperature-dependence of water absorption in paddy. PRACTICAL APPLICATION: The hydration of paddy is an important procedure in paddy processing, and across the world, many industries are working on it. Irrespective of the variety, paddy processing globally has remained tricky. Knowledge about the hydration behavior of paddy would enable food processors to better understand the effect of process parameters and to model their experimental setup to obtain the desired physicochemical attributes, as well as process yield. Customers would benefit from adequately processed paddy with better digestibility for which industry would have to invest less in terms of time and resources, thereby making the hydrated paddy more affordable.
Collapse