1
|
Kim SH, Roy PK, Park SY. Synergistic Effects of Combined Flavourzyme and Floating Electrode-Dielectric Barrier Discharge Plasma on Reduction of Escherichia coli Biofilms in Squid ( Todarodes pacificus). Microorganisms 2024; 12:1188. [PMID: 38930569 PMCID: PMC11205502 DOI: 10.3390/microorganisms12061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the synergistic effect of combining flavourzyme, a natural enzyme, and floating electrode-dielectric barrier discharge (FE-DBD) plasma (1.1 kV, 43 kHz, N2 1.5 m/s) treatment, a non-thermal decontamination technology, against Escherichia coli biofilms in squid. E. coli (ATCC 35150 and ATCC 14301) biofilms were formed on the surface of squid and treated with different minimum inhibitory concentrations (MICs) of flavourzyme (1/8; 31.25 μL/mL, 1/4; 62.5 μL/mL, 2/4; 125 μL/mL, and 3/4 MIC; 250 μL/mL) and FE-DBD plasma (5, 10, 30, and 60 min). Independently, flavourzyme and FE-DBD plasma treatment decreased by 0.26-1.71 and 0.19-1.03 log CFU/cm2, respectively. The most effective synergistic combination against E. coli biofilms was observed at 3/4 MIC flavourzyme + 60 min FE-DBD plasma exposure, resulting in a reduction of 1.55 log CFU/cm2. Furthermore, the combined treatment exhibited higher efficacy in E. coli biofilm inactivation in squid compared to individual treatments. The pH values of the synergistic combinations were not significantly different from those of the untreated samples. The outcomes indicate that the combined treatment with flavourzyme and FE-DBD plasma can effectively provide effective control of E. coli biofilms without causing pH changes in squid. Therefore, our study suggests a new microbial control method for microbial safety in the seafood industry.
Collapse
Affiliation(s)
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| |
Collapse
|
2
|
Zhang Y, Zhang Y, Li H, Bai T, Qian Q, Peng H, Mu Y, Wang L, Liu B, Chen J, Pan Z, Liu D, Zhao L. Effect of 4 °C and ice temperature on umami-enhancing nucleotides of conditioned pork. Food Chem 2023; 401:134146. [DOI: 10.1016/j.foodchem.2022.134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
|
3
|
Zhang Y, Zhang Y, Jia J, Peng H, Qian Q, Pan Z, Liu D. Nitrite and nitrate in meat processing: Functions and alternatives. Curr Res Food Sci 2023; 6:100470. [PMID: 36891544 PMCID: PMC9986499 DOI: 10.1016/j.crfs.2023.100470] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Meat and meat products are important foods in the human diet, but there are concerns about their quality and safety. The discovery of carcinogenic and genotoxic N-nitroso compounds (NOCs) in processed meat products has had serious negative impacts on the meat industry. In order to clarify the relationship between the use of nitrite or nitrate and the safety of meat or meat products, we reviewed NOCs in meat and meat products, the origin and safety implications of NOCs, effects of nitrite and nitrate on meat quality, national regulations, recent publications concerning the using of nitrite and nitrate in meat or meat products, and reduction methods. By comparing and analyzing references, (1) we found antioxidant, flavor improvement and shelf-life extension effects were recently proposed functions of nitrite and nitrate on meat quality, (2) the multiple functions of nitrite and nitrate in meat and meat products couldn't be fully replaced by other food additives at present, (3) we observed that the residual nitrite in raw meat and fried meat products was not well monitored, (4) alternative additives seem to be the most successful methods of replacing nitrite in meat processing, currently. The health risks of consuming processed meat products should be further evaluated, and more effective methods or additives for replacing nitrite or nitrate are needed.
Collapse
Affiliation(s)
- Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Yingjie Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Jianlin Jia
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Haichuan Peng
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Qin Qian
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Li H, Guo T, Jia J, Zhang P, Wang L, Xia N, Qian Q, Peng H, Pan Z, Liu D, Zhao L. Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China. Foods 2022; 11:foods11172704. [PMID: 36076889 PMCID: PMC9455266 DOI: 10.3390/foods11172704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
To characterize the quality of widely consumed pork in China, the chemical compositions and other indexes of five breeds of pork were compared. The results indicated that the moisture content, sensory flavor, and overall acceptability of Pipa pork (PPP) were superior to other breeds. The fat content and essential amino acids (EAA) of Yihao native pork (YNP) were significantly (p < 0.05) higher than in other breeds. The protein content, the total amount of amino acids, and perceptible flavor of Tibetan black pork (TBP) were higher than in other breeds. The protein nutrition profiles of manor black pork (MBP) and TBP were better than in others. The equivalent umami concentration (EUC) value of white pork (WP) was significantly (p < 0.05) higher than in others; however, the health risk of its fatty acid content was higher. There were unique protein and flavor chemicals in YNP, TBP, and PPP, which may be useful for distinguishing their authenticity.
Collapse
Affiliation(s)
- Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel./Fax: +86-28-84616805
| | - Yingjie Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Hui Li
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Tianrong Guo
- Chengdu Institute of Food Inspection, Chengdu 611130, China
| | - Jianlin Jia
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Pengcheng Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Linguo Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Ning Xia
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Qin Qian
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Haichuan Peng
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Peptidomics analysis of enzymatic hydrolysis beef. Food Sci Biotechnol 2022; 31:1267-1275. [DOI: 10.1007/s10068-022-01122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022] Open
|
6
|
Zhang Y, Li H, Zhang Y, Wang L, Zhang P, Jia J, Peng H, Qian Q, Zhang J, Pan Z, Liu D, Zhao L. Storage Stability and Flavor Change of Marinated Pork. Foods 2022; 11:foods11131825. [PMID: 35804641 PMCID: PMC9265805 DOI: 10.3390/foods11131825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
To evaluate the storage stability and flavor changes of marinated pork treated with chili and pepper essential oils, the contents of total sulfhydryl, malondialdehyde, total volatile base nitrogen (TVBN), Ca2+ATPase activity, and total viable counts of marinated pork were determined. Further, the non-volatile (umami, numb, and spicy) and volatile flavor compounds of marinated pork were analyzed. Based on the results, the chili and pepper essential oils had limited effects on the storage stability of marinated pork. However, these essential oils could inhibit the oxidation of lipids and proteins and reduce the number of microorganisms and TVBN in marinated pork within 6 days. The non-volatile flavors of the marinated pork decreased as the refrigeration time increased. It was concluded that the decomposition of umami-enhancing nucleotides (GMP, IMP, XMP), the number of flavor substances (hydroxyl-α-sanshool, hydroxyl-β-sanshool), and spicy (capsaicin) tasting compounds caused the decrease in non-volatile flavors.
Collapse
Affiliation(s)
- Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
- Correspondence: ; Tel./Fax: +86-28-8461-6805
| | - Hui Li
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Yingjie Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Linguo Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Pengcheng Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Jianlin Jia
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Haichuan Peng
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Qin Qian
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Jiaming Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; (H.L.); (Y.Z.); (L.W.); (P.Z.); (J.J.); (H.P.); (Q.Q.); (J.Z.); (D.L.)
| | - Liming Zhao
- R&D Center of Separation and Extraction Technology in Fermentation Industry, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
| |
Collapse
|
7
|
Zhang Y, Ke H, Bai T, Chen C, Guo T, Mu Y, Li H, Liao W, Pan Z, Zhao L. Characterization of umami compounds in bone meal hydrolysate. J Food Sci 2021; 86:2264-2275. [PMID: 33948957 DOI: 10.1111/1750-3841.15751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022]
Abstract
The objective of this research was to identify and characterize the chemical compounds that exhibited monosodium glutamate (MSG)-like taste in the hydrolyzed bone meal produced by using flavourzyme. The free amino acids and peptides in the bone meal hydrolysate were analyzed. The results showed that the glutamic acid and the aspartic acid in the bone meal increased by 13.1 times and 14.2 times, respectively, after the flavourzyme hydrolysis. The peptides' isolation identified six MSG-like peptides in the hydrolysate, including APGPVGPAG, DAINWPTPGEIAH, FLGDEETVR, GVDEATIIEILTK, PAGPVGPVG, and VAPEEHPTL, which should contribute to the taste. The human sensory evaluation results indicated that the six peptides showed MSG-like taste, and the electronic tongue analysis indicated that the six peptides showed sourness, saltiness, bitterness, and astringency. The findings of this study demonstrated that the MSG-like taste of the bone meal hydrolysate should be attributed to the generation of MSG-like amino acids and peptides from the flavourzyme hydrolysis. PRACTICAL APPLICATION: The manuscript describes the umami compounds in the bone meal hydrolysate. The findings from this study should further confirm the feasibility of using bone meal to prepare meat-flavor essence and provide a better understanding of preparing bio-source flavoring peptides, which is very important to the artificial meat development and gene breeding.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Huan Ke
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Ting Bai
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Chang Chen
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Tianrong Guo
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Yunlong Mu
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Hui Li
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Wenlong Liao
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Efficacy of flavourzyme against Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa biofilms on food-contact surfaces. Int J Food Microbiol 2020; 336:108897. [PMID: 33091755 DOI: 10.1016/j.ijfoodmicro.2020.108897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Food contamination is a major public health concern, with Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa being the prominent causal agents. They often produce resistant shields in food through biofilm formation and are difficult to remove from food-contact surfaces using conventional cleaning agents. In the current study, we investigated the efficacy of flavourzyme, an industrial peptidase, in biofilm removal from ultra-high molecular weight polyethylene (UHMWPE) and rubber surfaces and compared the corresponding efficacies with those of the commonly used DNase I. We noticed a significant reduction of young (24-h-old) and mature (72-h-old) biofilms on both surfaces after treatment with flavourzyme. The overall reduction potentiality of flavourzyme was higher than that of DNase I. The flavourzyme-mediated removal of biofilms appears to be caused by the gradual disruption of amide (NH) and polysaccharide (C-O-C) stretching bands of the extracellular polymeric substances (EPS) released by the microbes. EPS elimination and the cell-friendly behavior of flavourzyme were further confirmed by field emission scanning electron microscopy. Based on these findings, we suggest that flavourzyme can reduce microbial EPS formation, thus possibly controlling microbial food contamination. This finding reveals a new opportunity for the development of a novel method for controlling foodborne illness as well as food spoilage.
Collapse
|