1
|
Qiao J, Wang Q, Liu K, Chang Y, Wang L, Zhang S, Yu Y. Characterization and Antioxidant and Antibacterial Activities of Carboxymethylated Tamarind Seed Polysaccharide Composite Films Incorporated with ε-Polylysine and Their Application in Fresh-Cut Green Bell Pepper Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8805-8816. [PMID: 38566515 DOI: 10.1021/acs.jafc.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.
Collapse
Affiliation(s)
- Jianfu Qiao
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Qi Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Kunyu Liu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Yuan Chang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Linjing Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| |
Collapse
|
2
|
C T, D S, S T A, J Joseph S, Ali D, Alarfi S, Rembulan GD, Jones S, Yadav KK, Ramanujam GM, Chang SW, Balasubramani R. Defluoridation of potable water employed by natural polysaccharide isolated from Tamarindus indica L. CHEMOSPHERE 2023:138931. [PMID: 37245596 DOI: 10.1016/j.chemosphere.2023.138931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
The current study evaluated the effectiveness of Tamarindus indica L. seed polysaccharides in removing fluoride from potable water collected from Sivakasi,Viruthunagar district, Tamil Nadu, India. The physiochemical properties of the water samples were examined, and each parameter was compared to the standard prescribed by Bureau of Indian standards. Most of the parameters were within the permissible limit except for fluoride levels in the Sivakasi water sample. Polysaccharides were isolated from Tamarindus indica L. seeds and the fluoride removal efficacy of the polysaccharides was evaluated. The optimum treatment dosage of the isolated seed polysaccharides was determined using aqueous fluoride solutions of various ppm concentrations (1, 2, 3, 4, and 5 ppm). Tamarindus polysaccharides were added to the aqueous solutions in varying doses (0.02, 0.04, 0.06, 0.08, 1.0, and 1.2 g), and 0.04 g was observed to be the most effective at removing fluoride (by 60%). It was selected as the optimum dose for treating the fluoride-contaminated water sample. Following the treatment, fluoride concentration in the water sample dropped from 1.8 mg/L to 0.91 mg/L, falling below the BIS standard limit. The findings from the study demonstrated the use of T. indica L. seed polysaccharides as an effective natural coagulant for removing fluoride from potable water. GC-MS and FTIR analysis of the isolated polysaccharide samples were performed. The FTIR results revealed the functional groups that might attribute to the fluoride removal activity of the isolated polysaccharides. The observations from the study suggested that Tamarindus polysaccharides might be used as an alternative to chemical agent used for fluoride removal in order to preserve the environment and human welfare.
Collapse
Affiliation(s)
- Thamaraiselvi C
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.
| | - Srija D
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
| | - Athira S T
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Saud Alarfi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | | | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Ganesh Munusamy Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Ins Titute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Ravindran Balasubramani
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
3
|
Jayanthi Antonisamy A, Marimuthu S, Malayandi S, Rajendran K, Lin YC, Andaluri G, Lee SL, Ponnusamy VK. Sustainable approaches on industrial food wastes to value-added products - A review on extraction methods, characterizations, and its biomedical applications. ENVIRONMENTAL RESEARCH 2023; 217:114758. [PMID: 36400225 DOI: 10.1016/j.envres.2022.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.
Collapse
Affiliation(s)
- Arul Jayanthi Antonisamy
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Sivasankari Marimuthu
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Sankar Malayandi
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Siew Ling Lee
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Vinoth Kumar Ponnusamy
- Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung, 807, Taiwan.
| |
Collapse
|
4
|
Martins CM, Ferro DM, de Brito ES, Ferreira SRS. Industrial relevance of Tamarindus indica L. by-products as source of valuable active metabolites. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|