1
|
Sun X, Wang J, Cheng M, Qi Y, Han C. Strategies to Increase the Production of Triterpene Acids in Ligzhi or Reishi Medicinal Mushroom (Ganoderma lucidum, Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:25-41. [PMID: 38780421 DOI: 10.1615/intjmedmushrooms.2024052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.
Collapse
Affiliation(s)
- Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
2
|
Thirunavookarasu N, Kumar S, Shetty P, Shanmugam A, Rawson A. Impact of ultrasound treatment on the structural modifications and functionality of carbohydrates - A review. Carbohydr Res 2024; 535:109017. [PMID: 38163393 DOI: 10.1016/j.carres.2023.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Carbohydrates are crucial in food as essential biomolecules, serving as natural components, ingredients, or additives. Carbohydrates have numerous applications in the food industry as stabilizers, thickeners, sweeteners, and humectants. The properties and functionality of the carbohydrates undergo alterations when exposed to various thermal or non-thermal treatments. Ultrasonication is a non-thermal method that modifies the structural arrangement of carbohydrate molecules. These structural changes lead to enhanced gelling and viscous nature of the carbohydrates, thus enhancing their scope of application. Ultrasound may improve carbohydrate functionality in an environmentally sustainable way, leaving no chemical residues. The high-energy ultrasound treatments significantly reduce the molecular size of complex carbohydrates. Sonication parameters like treatment intensity, duration of treatment, and energy applied significantly affect the molecular size, depolymerization, viscosity, structural modifications, and functionality of carbohydrate biomolecules. This review provides a comprehensive analysis of ultrasound-assisted modifications in carbohydrates and the changes in functional properties induced by sonication.
Collapse
Affiliation(s)
- Nirmal Thirunavookarasu
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Sumit Kumar
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Prakyath Shetty
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Akalya Shanmugam
- Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Food Processing Business Incubation Centre, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India.
| |
Collapse
|
3
|
Behzadnia A, Moosavi-Nasab M, Mohammadi A, Babajafari S, Tiwari BK. Production of an ultrasound-assisted biosurfactant postbiotic from agro-industrial wastes and its activity against Newcastle virus. Front Nutr 2022; 9:966338. [PMID: 36225870 PMCID: PMC9549457 DOI: 10.3389/fnut.2022.966338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study is to optimize the biosurfactant production by Lactobacillus plantarum ATCC 8014 using low-cost substrates from industrial sources applying ultrasonication at 28 kHz frequency (power of 100 W). Given this, whey permeate and sugar cane molasses were screened to continue optimization using a central composite design to improve the production. Then, the effect of ultrasound was examined at different stages of microbial growth. The combination of whey permeate and sugar cane molasses with yeast extract (2.4 g/L) and inoculum size of 4.8% for 26 h of fermentation time significantly influenced biosurfactant production by reducing the surface tension of water (41.86 ± 0.24 mN/m). Moreover, ultrasonication led to the further reduction in surface tension value (39.95 ± 0.35 mN/m). Further, no significant differences were observed between products from synthetic and waste-based media. The biosurfactants exhibited antiviral activity against Newcastle disease virus (NDV) LaSota strain. It was discovered that biosurfactant produced in agro-food wastes with a significant antiviral effectiveness could be used to develop commercial application instead of chemical surfactants and biosurfactants from expensive synthetic media.
Collapse
Affiliation(s)
- Asma Behzadnia
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
- Seafood Processing Research Centre, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
- Seafood Processing Research Centre, School of Agriculture, Shiraz University, Shiraz, Iran
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Siavash Babajafari
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Brijesh K. Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
4
|
Gavahian M, Ratchaneesiripap P. Power ultrasound to enhance the fermentation process of traditional Taiwanese rice wine. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan, ROC
| | - Paphawarin Ratchaneesiripap
- International Master's Degree Program in Food Science, International College National Pingtung University of Science and Technology Pingtung Taiwan, ROC
| |
Collapse
|
5
|
Sun L, Liu LP, Wang YZ, Yang L, Zhang C, Yue MX, Dabbour M, Mintah BK, Wang L. Effect of ultrasonication on the metabolome and transcriptome profile changes in the fermentation of Ganoderma lucidum. Microbiol Res 2021; 254:126916. [PMID: 34798539 DOI: 10.1016/j.micres.2021.126916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Development of an efficient liquid fermentation method is helpful for food and pharmaceutical applications. This study investigated the effect of ultrasonication on the liquid fermentation of Ganoderma lucidum, a popular edible and medical fungi. Significant changes at both metabolic and transcriptional levels in mycelia were induced by ultrasound treatment. Compared with the control, 857 differential metabolites were identified (578 up- and 279 down-regulated metabolites), with more metabolites biosynthesis after sonication; 569 differentially expressed genes (DEGs) (267 up- and 302 down-) and 932 DEGs (378 up- and 554 down-) were identified in ultrasound-treated samples with recovery time of 0.5 and 3 h, respectively. Furthermore, 334 DEGs were continuously induced within the recovery time of 3 h, indicating the lasting influence of sonication on mycelia. The DEGs and differential metabolites were mainly involved in pathways of carbohydrate, energy metabolism, amino acids, terpenoids biosynthesis and metabolism and membrane transport, suggesting that ultrasound induced multifaceted effects on primary and secondary metabolism. Ultrasonication enhanced the triterpenoids production of G. lucidum (34.96 %) by up-regulating the expression of terpenoids synthase genes. This study shows that the application of ultrasound in liquid fermentation of G. lucidum is an efficient approach to produce more metabolites.
Collapse
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li-Ping Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ya-Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Xiang Yue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Benjamin Kumah Mintah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
6
|
Wang Y, Xu K, Lu F, Wang Y, Ouyang N, Ma H. Application of ultrasound technology in the field of solid-state fermentation: increasing peptide yield through ultrasound-treated bacterial strain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5348-5358. [PMID: 33650220 DOI: 10.1002/jsfa.11183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The increase of peptide yield contributed to reducing the usage of antibiotics in solid-state fermented feed. Ultrasound technology is used in the field of liquid-state fermentation to improve yield of fermented products but has not been utilized in the field of solid-state fermentation (SSF). The main objective of this study was to investigate the feasibility of improving peptide yield in SSF products through ultrasound-treated bacterial strain. RESULTS The highest peptides content in soybean meal SSF products reached 153.28 mg g-1 , which increased by 15.05% compared with the control. This content value was acquired through treating the bacteria of Bacillus amyloliquefaciens by ultrasound before inoculating into soybean meal under the optimized mode and parameters (simultaneous dual-frequency ultrasound mode, frequency combination of 40/60 kHz, total power density of 40 W L-1 , time of 20 min, pulse-on and pulse-off times of 40 and 60 s, delayed inoculation time of 0 h). Fermenting with ultrasound-treated bacterial strain can effectively increase peptide yield, biomass and protease activity of soybean meal fermented products during the SSF prophase. After treating by ultrasound, the latent phase and logarithmic phase of the bacterial strain shortened by 1 and 3 h while the generation time reduced by 23.64%. In qualitative test of protease activity, diameter ratio (DR) value of ultrasound-treated bacterial cells enlarged by 12.0% compared with the control. CONCLUSION Peptide yield of soybean meal SSF products can be improved through ultrasound-treated bacterial inoculum, which attributed to the promoting effect of ultrasound treatment on growth activity and protease production capability of bacterial cells. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kangkang Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yining Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ningning Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Li W, Ma H, He R, Ren X, Zhou C. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. ULTRASONICS SONOCHEMISTRY 2021; 76:105613. [PMID: 34119905 PMCID: PMC8207300 DOI: 10.1016/j.ultsonch.2021.105613] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Ultrasound has the potential to be broadly applied in the field of agricultural food processing due to advantages such as environmental friendliness, low energy costs, no need for exogenous additives and ease of operation. High-frequency ultrasound is mainly used in medical diagnosis and in the food industry for the identification of ingredients and production line quality testing, while low-frequency ultrasounds is mainly used for extraction and separation, accelerating chemical reactions, auxiliary microbial fermentation and quality enhancement in food industry. Magnetic fields have many advantages of convenient use, such as non-toxic, nonpolluting and safe. High-intensity pulsed magnetic fields are widely used as a physical non-thermal sterilization technology in food processing, while weak magnetic fields are better at activating microorganisms and promoting their growth. Ultrasound and magnetic fields, due to their positive biological effects, have a wide range of applications in the food processing industry. This paper provides an overview of the research progress and applications of ultrasound and magnetic fields in food processing from the perspectives of their biological effects and mechanisms of action. Additionally, with the development and application of physical field technology, physical fields can now be used to provide significant technical advantages for assisting fermentation. Suitable physical fields can promote the growth of microbial cells, improve mycelial production and increase metabolic activity. Furthermore, the current status of research into the use of ultrasound and magnetic field technologies for assisting the fermentation of rare edible fungi, is discussed.
Collapse
Affiliation(s)
- Wen Li
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xiaofeng Ren
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|