1
|
Bernardo P, Fernandes MJ, Fernandes MH, Teixeira MP, Alfaia CM, Serrano C, Patarata L, Fraqueza MJ. Salt reduction strategies for dry cured meat products: The use of KCl and microencapsulated spices and aromatic plant extracts. Meat Sci 2025; 221:109719. [PMID: 39637770 DOI: 10.1016/j.meatsci.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The World Health Organization set a goal of reducing salt intake by 30 % by 2025. This study investigates the impact of replacing 33 % NaCl with KCl and microencapsulated spices and aromatic plant extracts (ME) in a dry-cured meat sausage (CMS). Microbial, physico-chemical, and sensory analyses were conducted throughout processing and storage. Three batches of CMS were prepared with four formulations: Control (1.5 % NaCl), F1 (1 % NaCl, 0.5 % KCl), F2 (1 % NaCl, 0.5 % ME, 0.3 % KCl), and F3 (1 % NaCl, 0.5 % ME). The absence of Listeria monocytogenes was confirmed. The formulations did not affect the growth of lactic acid bacteria (7.8 log cfu/g), Enterococci (6.5 log cfu/g), and coagulase-negative staphylococci (5.6 log cfu/g). Biogenic amines increased significantly (P < 0.05) during storage, with cadaverine (from 166 to 456 mg/kg), tyramine (163 to 424 mg/kg) and putrescine (from 31.0 to 90.5 mg/kg), being the most abundant. All low sodium CMS had lower TBARS values (F1 = 0.59 mg MDA/kg, F2 = 0.56 mg MDA/kg and F3 = 0.47 mg MDA/kg) compared to control (0.78 mg MDA/kg). Colour parameters lightness (L*) and yellowness (b*) remained stable (P > 0.05) while sausages with KCl and/or ME were redder. CMS F1 was considered with the ideal saltiness by 54 % consumers, that is usually considered enough to launch the product in the market. The use of ME in CMS has potential but still requires optimization. The study demonstrates that a 33 % NaCl replacement with KCl is feasible without jeopardize the organoleptic characteristics or safety of CMS.
Collapse
Affiliation(s)
- P Bernardo
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - M J Fernandes
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - M H Fernandes
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - M P Teixeira
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - C M Alfaia
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - C Serrano
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, 2784-505 Oeiras, Portugal; LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia, Associated Laboratory TERRA, University of Lisbon, Lisbon, Portugal
| | - L Patarata
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CECAV-Animal and Veterinary Research Center, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - M J Fraqueza
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal.
| |
Collapse
|
2
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Faisal M, Kamaruzzaman S, Mukhlishien. Application of durian rind smoke powder to preserve chicken meatballs at room temperature. Heliyon 2023; 9:e19576. [PMID: 37681161 PMCID: PMC10481290 DOI: 10.1016/j.heliyon.2023.e19576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Smoke powder is a natural alternative to artificial preservatives for extending the shelf life of food products. This study assessed the use of smoke powder derived from durian rinds as a preservative for chicken meatballs. Durian rinds were pyrolyzed at 300 °C (T1), 340 °C (T2), and 380 °C (T3) to produce liquid smoke. After filtration to separate the remaining carbon, the resulting liquid smoke was purified by distillation at 190 °C and then converted into a smoke powder through the addition of maltodextrin and spray drying. The feasibility of smoke powder as a preservative for chicken meatballs was tested using total volatile base (TVB), total plate count (TPC), pH, and most probable number (MPN) tests for Escherichia coli. The findings demonstrated an upward trend in TVB, TPC, and MPN values over the storage duration. The TVB and TPC tests revealed that meatballs preserved with T3 smoke powder retained acceptable quality upon 64 h of storage. The MPN value of the T3 sample showed that E. coli bacterial contamination could still be tolerated up to 68 h of storage.
Collapse
Affiliation(s)
- Muhammad Faisal
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Center for Sustainable Agricultural and Rural Development, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Halal Research Center, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Suraiya Kamaruzzaman
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mukhlishien
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
4
|
Drioiche A, Ailli A, Remok F, Saidi S, Gourich AA, Asbabou A, Kamaly OA, Saleh A, Bouhrim M, Tarik R, Kchibale A, Zair T. Analysis of the Chemical Composition and Evaluation of the Antioxidant, Antimicrobial, Anticoagulant, and Antidiabetic Properties of Pistacia lentiscus from Boulemane as a Natural Nutraceutical Preservative. Biomedicines 2023; 11:2372. [PMID: 37760813 PMCID: PMC10525226 DOI: 10.3390/biomedicines11092372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Pistacia lentiscus L. has traditionally been employed as a diuretic and stimulant in the treatment of hypertension. Our interest centered on analyzing the chemical profile of the plant's leaves and its in vitro, in vivo, and in silico antioxidant, antimicrobial, anticoagulant, and antidiabetic effects in order to valorize this species and prepare new high-value products that can be used in the agro-food and pharmaceutical industries. When this species' essential oil was hydrodistilled and subjected to GC-MS analysis, the results showed that the principal components were germacrene D (17.54%), spathulenol (17.38%), bicyclogermacrene (12.52%), and terpinen-4-ol (9.95%). The extraction of phenolic compounds was carried out by decoction and Soxhlet. The determination of total polyphenols, flavonoids, and tannins of aqueous and organic extracts by spectrophotometric methods demonstrated the richness of this species in phenolic compounds. Chromatographic analysis by HPLC/UV-ESI-MS of the aqueous extract of P. lentiscus revealed the presence of 3,5-di-O-galloyl quinic acid, gallic acid, and 3,4,5-tri-O-galloyl quinic acid specific to this species. The study of antioxidant activity by three methods (DPPH, FRAP, and Total Antioxidant Capacity) revealed that P. lentiscus is a very promising source of natural antioxidants. The antimicrobial activity of the essential oil and aqueous extract (E0) was studied by microdilution on the microplate. The results revealed the effectiveness of the aqueous extract compared to the essential oil against Gram-negative bacteria (K. pneumoniae, A. baumannii, E. aerogenes, E. cloacae, P. fluorescence, Salmonella sp., Shigella sp., and Y. enterolitica) and candidoses (C. krusei and C. albicans). The measurements of prothrombin time (PT) and activated partial thromboplastin time (aPTT) of the aqueous extract (E0) can significantly prolong these tests from concentrations of 2.875 and 5.750 mg/mL, respectively. The antihyperglycemic effect of the aqueous extract (E0) showed a strong in vitro inhibitory activity of α-amylase and α-glucosidase compared to acarbose. Thus, it significantly inhibited postprandial hyperglycemia in Wistar albino rats. The in-silico study of the major compounds of the essential oil and extract (E0) carried out using PASS, SwissADME, pkCSM, and molecular docking tools confirmed our in vitro and in vivo results. The studied compounds showed a strong ability to be absorbed by the gastrointestinal tract and to passively diffuse through the blood-brain barrier, a similarity to drugs, and water solubility. Molecular docking experiments deduced the probable mode of action of the identified compounds on their respective target proteins, such as NADPH oxidase, thrombin, α-amylase, and α-glucosidase. Furthermore, given the demonstrated antioxidant, antimicrobial, anticoagulant, and antidiabetic effects, we can affirm the richness of P. lentiscus in bioactive molecules and its use in traditional medicine as a source of preservative agent.
Collapse
Affiliation(s)
- Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
- Medical Microbiology Laboratory, Mohamed V. Hospital, Meknes 50000, Morocco
| | - Atika Ailli
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Firdaous Remok
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Soukaina Saidi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Aman Allah Gourich
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Ayoub Asbabou
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Mohamed Bouhrim
- Team of Functional and Pathological Biology, Laboratory of Biological Engineering, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco;
| | - Redouane Tarik
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Amale Kchibale
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| |
Collapse
|
5
|
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr 2023; 10:1118761. [PMID: 37057062 PMCID: PMC10086256 DOI: 10.3389/fnut.2023.1118761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
Collapse
Affiliation(s)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
6
|
Kappa-carrageenan-poly(vinyl alcohol) electrospun fiber mats encapsulated with Prunus domestica anthocyanins and epigallocatechin gallate to monitor the freshness and enhance the shelf-life quality of minced beef meat. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Nuerjiang M, Li Y, Yue X, Kong B, Liu H, Wu K, Xia X. Analysis of inhibition of guava (Psidium guajava l.) leaf polyphenol on the protein oxidative aggregation of frozen chicken meatballs based on structural changes. Food Res Int 2023; 164:112433. [PMID: 36738000 DOI: 10.1016/j.foodres.2022.112433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
This study compared the effects of guava leaf polyphenol (GLP) on the aggregation and structural changes of myofibrillar proteins (MPs) from chicken meatballs, frozen for 6 months, with that of tea polyphenol (TP). The high antioxidation ability of 450 mg/L GLP was manifested by changes in 1, 1-diphenyl-2-picrylhydrazyl (DDPH), 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, and the ferric reducing antioxidant power (FRAP) in vitro. Compared with the control, the carbonyl, disulfide bond content, particle size, zeta potential and turbidity of sample with GLP decreased by 25.9 %, 17.7 %, 18.2 %, 11.4 % and 11.7 %, respectively, while the solubility of the sample, after freezing it for 6 months, increased by 14.8 %. Meanwhile, in sustaining the structural stability of MPs, the GLP-treated group exhibited better microstructure (scanning electron microscopy, SEM), lower free amino and sulfhydryl loss, higher α-helix structure and fluorescence intensity than the control. Our results showed that GLP significantly inhibited MP aggregation, and was superior to TP in terms of its particle size, solubility, and turbidity, sulfhydryl content (P < 0.05). Overall, it was demonstrated that GLP has the potential to inhibit protein aggregation and enhance structural stability during frozen storage.
Collapse
Affiliation(s)
- Maheshati Nuerjiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoxiang Yue
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Kowalczyk M, Domaradzki P, Materska M, Florek M, Kaliniak-Dziura A, Skałecki P, Żółkiewski P, Grenda T, Pabich M. Effect of the addition of chokeberry leaf extract on the physicochemical and sensory properties of burgers from dark cutting veal. Food Chem 2023; 399:133978. [DOI: 10.1016/j.foodchem.2022.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
|
9
|
Serdaroğlu M, Öztürk‐Kerimoğlu B, Zungur‐Bastıoğlu A, Kavuşan HS, Ötleş S, Özyurt VH. Lipid–Protein Oxidation and In Vitro Digestibility of Fermented Turkey Sausages as Affected by Lipid Formulation. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meltem Serdaroğlu
- Food Engineering Department Engineering Faculty Ege University Bornova Izmir 35100 Turkey
| | - Burcu Öztürk‐Kerimoğlu
- Food Engineering Department Engineering Faculty Ege University Bornova Izmir 35100 Turkey
| | - Aslı Zungur‐Bastıoğlu
- Food Engineering Department Engineering Faculty Adnan Menderes University Aydın 09010 Turkey
| | - Hülya Serpil Kavuşan
- Food Engineering Department Engineering Faculty Ege University Bornova Izmir 35100 Turkey
| | - Semih Ötleş
- Food Engineering Department Engineering Faculty Ege University Bornova Izmir 35100 Turkey
| | - Vasfiye Hazal Özyurt
- Gastronomy and Culinary Art Faculty of Tourism Mugla Sıtkı Kocman University Akyaka Mugla 48650 Turkey
| |
Collapse
|
10
|
Orlien V, Aalaei K, Poojary MM, Nielsen DS, Ahrné L, Carrascal JR. Effect of processing on in vitro digestibility (IVPD) of food proteins. Crit Rev Food Sci Nutr 2021; 63:2790-2839. [PMID: 34590513 DOI: 10.1080/10408398.2021.1980763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteins are important macronutrients for the human body to grow and function throughout life. Although proteins are found in most foods, their very dissimilar digestibility must be taking into consideration when addressing the nutritional composition of a diet. This review presents a comprehensive summary of the in vitro digestibility of proteins from plants, milk, muscle, and egg. It is evident from this work that protein digestibility greatly varies among foods, this variability being dependent not only upon the protein source, but also the food matrix and the molecular interactions between proteins and other food components (food formulation), as well as the conditions during food processing and storage. Different approaches have been applied to assess in vitro protein digestibility (IVPD), varying in both the enzyme assay and quantification method used. In general, animal proteins tend to show higher IVPD. Harsh technological treatments tend to reduce IVPD, except for plant proteins, in which thermal degradation of anti-nutritional compounds results in improved IVPD. However, in order to improve the current knowledge about protein digestibility there is a vital need for understanding dependency on a protein source, molecular interaction, processing and formulation and relationships between. Such knowledge can be used to develop new food products with enhanced protein bioaccessibility.
Collapse
Affiliation(s)
- Vibeke Orlien
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jorge Ruiz Carrascal
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| |
Collapse
|
11
|
More SB, Gogate PR, Waghmare JS. Bioactives from pomegranate peel and moringa leaves as natural antioxidants for stability of edible oil blends. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00150-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Kaur R, Gupta TB, Bronlund J, Kaur L. THE POTENTIAL OF ROSEMARY AS A FUNCTIONAL INGREDIENT FOR MEAT PRODUCTS- A REVIEW. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Effect of Herbal Addition on the Microbiological, Oxidative Stability and Sensory Quality of Minced Poultry Meat. Foods 2021; 10:foods10071537. [PMID: 34359407 PMCID: PMC8304878 DOI: 10.3390/foods10071537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to assess the effect of herbal additions with antioxidant properties (pepper, thyme and oregano) on the microbiological and oxidative stability as well as the sensory quality of minced poultry meat. Meatballs treatments without additives and treatments with the addition of three types of spices in two forms—dry spices and industrial extracts were examined. Popular seasoning additives of oregano (Origanum vulgare), thyme (Thymus vulgaris) and black pepper (Piper nigrum) at 0.3% of dry herbal or 0.003% as industrial extract were added to minced meat. The microbiological, chemical and sensory tests were performed at specified times and storage temperature. Based on the studied criteria, products maintained constant and adequate quality by up to 10 days while stored in 4 °C. In the case of all tested samples, the overall sensory quality began to deteriorate after 10 days of storage. The preservative role of herbs and extracts in meat products during processing and storage was observed. Oregano and black pepper in both forms maintained good microbial quality and showed their inhibitory effects on the growth of psychrotrophic bacteria. It was observed that dried herbs revealed a stronger antioxidant effect than additives in the form of extracts. The studied dried herbs played an antioxidant, antimicrobial and preservative role in meat products during processing and storage.
Collapse
|
14
|
Effects of Green Tea Powder, Pomegranate Peel Powder, Epicatechin and Punicalagin Additives on Antimicrobial, Antioxidant Potential and Quality Properties of Raw Meatballs. Molecules 2021; 26:molecules26134052. [PMID: 34279391 PMCID: PMC8271633 DOI: 10.3390/molecules26134052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative technologies, which have been developed in order to meet the consumers’ demand for nourishing and healthy meat and meat products, are followed by the food industry. In the present study, it was determined, using the HPLC method, that green tea contains a high level of epicatechin (EP) under optimal conditions and that pomegranate peel contains a high level of punicalagin (PN). Green tea, pomegranate peel, EP and PN were added to meatballs at different concentrations in eight groups. The antioxidant capacities of extracts were measured. The antimicrobial activity was examined for 72 h using three different food pathogens. The highest level of antimicrobial activity was achieved in the 1% punicalagin group, whereas the minimum inhibition concentration (L. monocytogenes, S. typhimurium) was found to be 1.87 mg/mL. A statistically significant decrease was found in FFA, POV and TBARS levels of meatballs on different days of storage (p < 0.05). When compared to the control group, the bioactive compounds preserved the microbiological and chemical properties of meatballs during storage at +4 °C (14 days). It was concluded that the extracts with high EP and PN concentrations can be used as bio-preservative agents for meat and meat products.
Collapse
|
15
|
Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review. Antioxidants (Basel) 2021; 10:antiox10020263. [PMID: 33572049 PMCID: PMC7915777 DOI: 10.3390/antiox10020263] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023] Open
Abstract
Comminuted meat products are highly susceptible to safety and quality degradation partly because of their large interfacial area in the emulsion. The food industry extensively uses synthetic chemical preservatives to delay that degradation which is caused by microbial growth, enzyme activities and oxidation reactions. However, due to the potential health damage (e.g., cardiovascular diseases, neurodegenerative diseases, cancers among others) synthetic preservatives in meat may cause, consumers are becoming skeptical to buy meat products containing such additives. In the meat industry, the interest of finding natural food preservatives is intensifying. Polyphenolic-rich plants used as natural food preservatives offer the best alternative for a partial or a complete replacement of their synthetic counterparts. They can be extracted from natural sources such as olives, fruits, grapes, vegetables, spices, herbs, and algae, and among others. The common feature of these phenolic compounds is that they have one or more aromatic rings with one or more -OH group which are essential for their antimicrobial and antioxidant properties. This review article is intended to provide an overview of the plant-based phenolic molecules used as natural food preservative, their antimicrobial and antioxidant mechanism of action, and their potential application in comminuted meat.
Collapse
|
16
|
Sensory Analysis in Assessing the Possibility of Using Ethanol Extracts of Spices to Develop New Meat Products. Foods 2020; 9:foods9020209. [PMID: 32085389 PMCID: PMC7073785 DOI: 10.3390/foods9020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/29/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
The food industry has endeavoured to move toward the direction of clean labelling. Therefore, replacing synthetic preservatives with natural plant extracts has gained significant importance. It is necessary to determine whether products enriched with such extracts are still accepted by consumers. In this study, consumer tests (n = 246) and sensory profiling were used to assess the impact of ethanol extracts of spices (lovage, marjoram, thyme, oregano, rosemary, and basil; concentration 0.05%) on the sensory quality of pork meatballs and hamburgers. The desirability of meat products with spice extracts to consumers depended on the added extract. The highest scores were for products with lovage extract, whose sensory profile was the most similar to the control sample without the addition of an extract (with higher intensity of broth taste compared with the others). Products with rosemary and thyme extracts were characterised by lower desirability than the control. This was related to the high intensity of spicy and essential oil tastes, as well as the bitter taste in the case of products with thyme. The studied extracts of spices allow for the creation of meat products (meatballs and hamburgers) with high consumer desirability, however, the high intensity of essential oil and spicy tastes might be a limitation.
Collapse
|
17
|
Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). SUSTAINABILITY 2020. [DOI: 10.3390/su12041305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antioxidants are a wide group of chemical compounds characterized by high bioactivity. They affect human health by inhibiting the activity of reactive oxygen species. Thus, they limit their harmful effect and reduce the risk of many diseases, including cardiovascular diseases, cancers, and neurodegenerative diseases. Antioxidants are also widely used in the food industry. They prevent the occurrence of unfavourable changes in food products during storage. They inhibit fat oxidation and limit the loss of colour. For this reason, they are often added to meat products. Many diet components exhibit an antioxidative activity. A high antioxidative capacity is attributed to fruit, vegetables, spices, herbs, tea, and red wine. So far, the antioxidative properties of various plant materials have been tested. However, the antioxidative activity of some products has not been thoroughly investigated yet. To date, there have been only a few studies on the antioxidative activity of the pumpkin, including pumpkin seeds, flowers, and leaves, but not the pulp. The main focus of our experiment was to optimize the extraction so as to increase the antioxidative activity of the pumpkin pulp. Variable extraction conditions were used for this purpose, i.e., the type and concentration of the solvent, as well as the time and temperature of the process. In addition, the experiment involved a comparative analysis of the antioxidative potential of 14 pumpkin cultivars of the Cucurbita maxima species. The study showed considerable diversification of the antioxidative activity of different pumpkin cultivars.
Collapse
|
18
|
Buamard N, Benjakul S. Effect of ethanolic coconut husk extract and pre-emulsification on properties and stability of surimi gel fortified with seabass oil during refrigerated storage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
|
20
|
Lorenzo JM, Mousavi Khaneghah A, Gavahian M, Marszałek K, Eş I, Munekata PES, Ferreira ICFR, Barba FJ. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit Rev Food Sci Nutr 2018; 59:2879-2895. [DOI: 10.1080/10408398.2018.1477730] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland
| | - Ismail Eş
- Department of Material and Bioprocess Engineering, Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo E. S. Munekata
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Jardim Elite, Pirassununga, São Paulo, Brazil
| | - Isabel C. F. R. Ferreira
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolonia, Bragança, Portugal
| | - Francisco J. Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda.Vicent Andrés Estellés, Burjassot, València, Spain
| |
Collapse
|
21
|
Quevedo R, Pedreschi F, Valencia E, Díaz O, Bastías J, Muñoz O. Kinetic modeling of deterioration of frozen industrial burgers based on oxidative rancidity and color. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Roberto Quevedo
- Departamento de Acuicultura y Recursos Agropecuarios; Universidad de Los Lagos, Programa Fitogen; Osorno Chile
| | - Franco Pedreschi
- Departamento de Ingeniería Química y Bioprocesos, Av. Vicuña Mackenna 4869; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Emir Valencia
- Departamento de Acuicultura y Recursos Agropecuarios; Universidad de Los Lagos, Programa Fitogen; Osorno Chile
| | - Oscar Díaz
- Departamento de Acuicultura y Recursos Agropecuarios; Universidad de Los Lagos, Programa Fitogen; Osorno Chile
| | - José Bastías
- Departamento de Ingeniería de Alimento, Av. Andrés Bello 720; Universidad del Bío-Bío; Chillán Chile
| | - Ociel Muñoz
- Instituto de Ciencia y Tecnología de Alimentos. Facultad de ciencias y Agricultura (ICYTAL), Campus Isla Teja s/n; Universidad Austral de Chile; Valdivia Chile
| |
Collapse
|
22
|
Hęś M, Szwengiel A, Dziedzic K, Le Thanh-Blicharz J, Kmiecik D, Górecka D. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products. J Food Sci 2017; 82:882-889. [DOI: 10.1111/1750-3841.13682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Marzanna Hęś
- Dept. of Food Service and Catering; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| | - Artur Szwengiel
- Inst. of Food Technology of Plant Origin; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| | - Krzysztof Dziedzic
- Dept. of Pediatric Gastroenterology and Metabolic Diseases; Poznan Univ. of Medical Sciences; Szpitalna 33/27 60-572 Poznań Poland
| | - Joanna Le Thanh-Blicharz
- Dept. of Food Concentrates and Starch Products; prof. Wacław Dąbrowski Inst. of Agricultural and Food Biotechnology; Starołęcka 40 61-361 Poznań Poland
| | - Dominik Kmiecik
- Dept. of Food Service and Catering; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| | - Danuta Górecka
- Dept. of Food Service and Catering; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| |
Collapse
|