1
|
Gultekin Subasi B, Bilgin AB, Günal-Köroğlu D, Saricaoglu B, Haque S, Esatbeyoglu T, Capanoglu E. Effect of sonoprocessing on the quality of plant-based analog foods: Compatibility to sustainable development goals, drawbacks and limitations. ULTRASONICS SONOCHEMISTRY 2024; 110:107033. [PMID: 39255592 DOI: 10.1016/j.ultsonch.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Sonoprocessing (US), as one of the most well-known and widely used green processing techniques, has tremendous benefits to be used in the food industry. The urgent call for global sustainable food production encourages the usage of such techniques more often and effectively. Using ultrasound as a hurdle technology synergistically with other green methods is crucial to improving the efficiency of the protein shift as well as the number of plant-based analog foods (PBAFs) against conventional products. It was revealed that the US has a significant impact when used as an assistant tool with other green technologies rather than being used alone. It increases the protein extraction efficiencies from plant biomasses, improves the techno-functional properties of food compounds, and makes them more applicable for industrial-scale alternative food production in the circular economy. The US aligns well with the objectives outlined in the UN's Sustainable Development Goals (SDGs), and Planetary Boundaries (PBs) framework, demonstrating promising outcomes in life cycle assessment. However, several challenges such as uncontrolled complex matrix effect, free radical formation, uncontrolled microbial growth/germination or off-flavor formation, removal of aromatic compounds, and Maillard reaction, are revealed in an increased number of studies, all of which need to be considered. In addition to a variety of advantages, this review also discusses the drawbacks and limitations of US focusing on PBAF production.
Collapse
Affiliation(s)
- Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Aysenur Betul Bilgin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye; Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Chen X, Fan R, Wang Y, Munir M, Li C, Wang C, Hou Z, Zhang G, Liu L, He J. Bovine milk β-casein: Structure, properties, isolation, and targeted application of isolated products. Compr Rev Food Sci Food Saf 2024; 23:e13311. [PMID: 38445543 DOI: 10.1111/1541-4337.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
β-Casein, an important protein found in bovine milk, has significant potential for application in the food, pharmaceutical, and other related industries. This review first introduces the composition, structure, and functional properties of β-casein. It then reviews the techniques for isolating β-casein. Chemical and enzymatic isolation methods result in inactivity of β-casein and other components in the milk, and it is difficult to control the production conditions, limiting the utilization range of products. Physical technology not only achieves high product purity and activity but also effectively preserves the biological activity of the components. The isolated β-casein needs to be utilized effectively and efficiently for various purity products in order to achieve optimal targeted application. Bovine β-casein, which has a purity higher than or close to that of breast β-casein, can be used in infant formulas. This is achieved by modifying its structure through dephosphorylation, resulting in a formula that closely mimics the composition of breast milk. Bovine β-casein, which is lower in purity than breast β-casein, can be maximized for the preparation of functional peptides and for use as natural carriers. The remaining byproducts can be utilized as food ingredients, emulsifiers, and carriers for encapsulating and delivering active substances. Thus, realizing the intensive processing and utilization of bovine β-casein isolation. This review can promote the industrial production process of β-casein, which is beneficial for the sustainable development of β-casein as a food and material. It also provides valuable insights for the development of other active substances in milk.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Rui Fan
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yuanbin Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Maliha Munir
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhanqun Hou
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| |
Collapse
|
3
|
Yu Y, Li X, Zhang J, Li X, Wang J, Sun B. Oat milk analogue versus traditional milk: Comprehensive evaluation of scientific evidence for processing techniques and health effects. Food Chem X 2023; 19:100859. [PMID: 37780279 PMCID: PMC10534225 DOI: 10.1016/j.fochx.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Milk, enriched with high-quality protein, is a healthy and nutritious food that meets people's needs. However, consumers are turning their attention to plant-based milk due to several concerns, such as lactose intolerance, allergies and some diseases caused by milk; carbon emission from cattle farming; economical aspects; and low access to vitamins and minerals. Oat milk, which is produced from whole grain oats, is lactose free and rich in a variety of nutrients and phytochemicals. With the significant development of food processing methods and advancement in milk simulation products, the production of plant-based milk, such as cereal milk, has greatly progressed. This review described some features of oat milk analogue versus traditional milk and compared the properties, processing technologies, health effects, environmental friendliness, and consumer acceptance of these products. It is expected to provide a reference for evaluating development trends and helping consumers choose between oat milk and traditional milk.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Xiao Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Xie A, Dong Y, Liu Z, Li Z, Shao J, Li M, Yue X. A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. Foods 2023; 12:3952. [PMID: 37959070 PMCID: PMC10650231 DOI: 10.3390/foods12213952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has expanded rapidly. Each variety has unique characteristics in terms of flavor, texture, and nutritional composition, offering consumers a diverse range of choices tailored to meet individual preferences and dietary needs. In this review, we aimed to provide a comprehensive overview of the various types of plant-based drinks and explore potential considerations including their nutritional compositions, health benefits, and processing technologies, as well as the challenges facing the plant-based drink processing industry. We delve into scientific evidence supporting the consumption of plant-based drinks, discuss their potential roles in meeting dietary requirements, and address current limitations and concerns regarding their use. We hope to illuminate the growing significance of plant-based drinks as sustainable and nutritious alternatives to dairy milk, and assist individuals in making informed choices regarding their dietary habits, expanding potential applications for plant-based drinks, and providing necessary theoretical and technical support for the development of a plant-based drink processing industry.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Yushi Dong
- Department of Nutritional Sciences, King’s College London, London SE19NH, UK;
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China;
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
5
|
Mehany T, Siddiqui SA, Olawoye B, Olabisi Popoola O, Hassoun A, Manzoor MF, Punia Bangar S. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit Rev Food Sci Nutr 2023; 64:7237-7267. [PMID: 36861223 DOI: 10.1080/10408398.2023.2183381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.
Collapse
Affiliation(s)
- Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Babatunde Olawoye
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Oyekemi Olabisi Popoola
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
6
|
Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022; 11:foods11060875. [PMID: 35327297 PMCID: PMC8952883 DOI: 10.3390/foods11060875] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Consumer interest and research in plant-based dairy analogues has been growing in recent years because of increasingly negative implications of animal-derived products on human health, animal wellbeing, and the environment. However, plant-based dairy analogues face many challenges in mimicking the organoleptic properties of dairy products due to their undesirable off-flavours and textures. This article thus reviews fermentation as a viable pathway to developing clean-label plant-based dairy analogues with satisfactory consumer acceptability. Discussions on complementary strategies such as raw material selection and extraction technologies are also included. An overview of plant raw materials with the potential to be applied in dairy analogues is first discussed, followed by a review of the processing steps and innovative techniques required to transform these plant raw materials into functional ingredients such as plant-based aqueous extracts or flours for subsequent fermentation. Finally, the various fermentation (bacterial, yeast, and fungal) methodologies applied for the improvement of texture and other sensory qualities of plant-based dairy analogues are covered. Concerted research efforts would be required in the future to tailor and optimise the presented wide diversity of options to produce plant-based fermented dairy analogues that are both delicious and nutritionally adequate.
Collapse
|
7
|
Ma X, Chatterton DE. Strategies to improve the physical stability of sodium caseinate stabilized emulsions: A literature review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106853] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Reyes-Jurado F, Soto-Reyes N, Dávila-Rodríguez M, Lorenzo-Leal A, Jiménez-Munguía M, Mani-López E, López-Malo A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- F. Reyes-Jurado
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - N. Soto-Reyes
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - M. Dávila-Rodríguez
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - A.C. Lorenzo-Leal
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - M.T. Jiménez-Munguía
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - E. Mani-López
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - A. López-Malo
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|
9
|
The effect of drying temperature and sodium caseinate concentration on the functional and physical properties of spray-dried coconut milk. Journal of Food Science and Technology 2020; 58:3174-3182. [PMID: 34294979 DOI: 10.1007/s13197-020-04820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
This study investigated the effect of drying temperature on the stability and quality of spray-dried coconut milk. A low concentration (1-2% w/w) of sodium caseinate (SC) was used as emulsifying agent with 8-9% of maltodextrin. The spray drying temperature was varied from 140 to 180 °C. Emulsions prepared at different SC concentration remained stable without phase separation for 24 h. Higher the SC concentration produced smaller-sized of droplet and powder particles. The spray dried coconut milk has a skin-forming structure. Emulsion with low concentration of SC (1% w/w) is unstable during atomisation process due to re-coalescence of fat. Adding SC to the emulsion reduce the moisture content to less than 5%. However, drying the emulsions at 180 °C gave negative impact to the powder properties. Some particles rupture and lead to high free fat content, high insolubility and larger fat droplet size. Presence of fleck is also noticed in the powder.
Collapse
|
10
|
Yatsenko O, Yushchenko N, Kuzmyk U, Pasichnyi V, Kochubei-Lytvynenko O, Frolova N, Korablova O, Mykoliv I, Voitsekhivskyi V. Research of milk fat oxidation processes during storage of butter pastes. POTRAVINARSTVO 2020. [DOI: 10.5219/1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic quality indicators studied: acidity, peroxide, anisidine value and integrated value of complete fat oxidation. Butter paste was selected as a reference, consisting of butter, skim milk powder and fat-soluble emulsifiers. Peroxide value during storage at the temperature of (4 ±2 °С) for the first 4 days did not exceed 5.0 1/2 О mmol.kg-1, on the 15th day fat peroxide value of butter paste with milk-vegetable protein exceeded permissible limits that is indicative of milk fat contamination. At the temperature of (-3 ±1 °С) butter paste fat couldn't be qualified as fresh when storing during 15 days, peroxide value exceeds permissible limits on the 25th day of storage. Rising of the peroxide value above 5 1/2 О mmol.kg-1 was detected on the 25th day of storage, exceeding of threshold value was on the 45th day. It was established that rate of oxidation processes in butter pastes with vegetable protein is the highest among all studied samples in each particular control and observation point. It was determined that the rate of secondary lipid oxidation depends on the storage temperature and is observed when storing butter paste samples at a temperature of (-3 ±1 °С) on the 10th day, (-24 ±2 °С) – on the 30th day of storage. Acid value did not exceed recommended limits (2.5 °K) and was on average – 2.3 °K when storing butter paste during 10 days at a temperature of (4 ±2 °С); 2.1 °K during 20 days at the temperature of (-3 ±1 °С), 2.4 °K during 40 days at the temperature of (-24 ±2 °С). In view of obtained results of fat phase stability evaluation of studied butter pastes, the following storage maximum time is recommended: at the temperature of (4 ±2 °С) ‒ 7 days, at the temperature of (-3 ±1 °С) – 15 days, at the temperature of (-26 ±2 °С) ‒ 30 days.
Collapse
|
11
|
Paul AA, Kumar S, Kumar V, Sharma R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit Rev Food Sci Nutr 2019; 60:3005-3023. [DOI: 10.1080/10408398.2019.1674243] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anna Aleena Paul
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Satish Kumar
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kumar
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rakesh Sharma
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Himachal Pradesh, India
| |
Collapse
|