1
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
3
|
Lv R, Muhammad AI, Zou M, Yu Y, Fan L, Zhou J, Ding T, Ye X, Guo M, Liu D. Hurdle enhancement of acidic electrolyzed water antimicrobial efficacy on Bacillus cereus spores using ultrasonication. Appl Microbiol Biotechnol 2020; 104:4505-4513. [PMID: 32215708 DOI: 10.1007/s00253-020-10393-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
Abstract
This study evaluated the inactivation effect of ultrasonic treatment combined with acidic electrolyzed water (AEW) on Bacillus cereus spores. AEW treatment reduced the spores by 1.05-1.37 log CFU/mL while the sporicidal effect of ultrasound was minor. More strikingly, simultaneous ultrasonic and AEW treatments for 30 min led to 2.29 log CFU/mL reduction and thus, considered a synergistic effect. Flow cytometry combined with SYTO/PI staining analysis revealed that ultrasound hydrolyzed the cortex while the AEW partially damaged the integrity of the inner membrane. Scanning and transmission electron microscopies were used to characterize the ultrastructural changes. The detachment of the exosporium induced by ultrasound was the most apparent difference compared with the control group, and the electron density of spores appeared to be heterogeneous after treatment with AEW. These results indicated that combining ultrasound with AEW is a promising decontamination technology with potential uses in the food industry and environmental remediation.
Collapse
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Aliyu Idris Muhammad
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Mingming Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Yue Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Lihua Fan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
- Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
4
|
Preservative Effect of Novel Combined Treatment with Electrolyzed Active Water and Lysozyme Enzyme to Increase the Storage Life of Vacuum-Packaged Carp. J FOOD QUALITY 2020. [DOI: 10.1155/2020/4861471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present study, common carp (Cyprinus carpio), a highly valuable worldwide commercial fish species, was used as a model. One sample group of fresh, skin-on carp fillets was placed in a bath of acidic electrolyzed oxidizing (AEO) water containing a solution of 100 mg/kg chloride ion concentration for 5 minutes. Another sample group was treated with acidic electrolyzed water and 0.5% lysozyme enzyme solution. Another set of samples were washed after the AEO water treatment. Within the study, a storage test was performed to examine the effect of the new combined treatment on the samples’ shelf-life and quality while kept at 2°C. During the storage period, chemical (chlorate) and microbiological (TVC, mesophilic anaerobic plate count, and Enterobacteriaceae count) tests and sensory evaluation were conducted. The combination of AEO water and lysozyme enzyme showed additional bactericidal efficacy on the surface of the carp fillets, which has never been reported before. Both the AEO water and the combined treatment effectively increased the shelf life of the samples, causing 2.4–3.1 log CFU/g difference compared to the control by the end of the 7-day storage. The measured residual chlorate content exceeded the legal threshold, but washing the samples resulted in values below the theoretical threshold limit. The applied preservation methods did not have an adverse effect on the organoleptic properties of the samples.
Collapse
|