1
|
Zhang K, Li N, Wang Z, Feng D, Liu X, Zhou D, Li D. Recent advances in the color of aquatic products: Evaluation methods, discoloration mechanism, and protection technologies. Food Chem 2024; 434:137495. [PMID: 37741243 DOI: 10.1016/j.foodchem.2023.137495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Color plays a pivotal role in guiding and assessing the industrial production of aquatic products due to the swift sensory perception of information through vision. This review provides a comprehensive overview of the following four aspects: (a) mechanisms governing natural color formation in aquatic products, (b) factors and mechanisms contributing to the discoloration of aquatic products, (c) cutting-edge methods for color analysis and detection, and (d) current valuable techniques for preserving color quality. The natural color of aquatic products is derived from skin chromatophores, endogenous pigment proteins, and astaxanthin. Discoloration of aquatic products can occur due to lipid oxidation, as well as enzymatic and non-enzymatic browning. Furthermore, this review examines frontier color protective technologies, encompassing physical methods like ultra-high pressure, irradiation, and low-temperature plasma, as well as chemical methods involving natural preservatives. The findings of this study offer significant insights into the development of high-quality aquatic products.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Na Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Zonghan Wang
- College of Biological System Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Dingding Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| |
Collapse
|
3
|
Presenza L, Ferraz Teixeira B, Antunes Galvão J, Maria Ferreira de Souza Vieira T. Technological strategies for the use of plant-derived compounds in the preservation of fish products. Food Chem 2023; 419:136069. [PMID: 37027976 DOI: 10.1016/j.foodchem.2023.136069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
New approaches to reducing synthetic preservatives in the preservation of foods draw the attention of plant-derived bioactive compounds, especially for application in foods highly susceptible to spoilage, such as fish products. The review presents relevant data from procurement, application, and methodological research trends to investigate the potential effects of plant-derived bioactive compounds on shelf life extension in fish products. The systematization of data allowed observation that the different methods of extraction and application of bioactive plant compounds result in different effects, such as the reduction of lipid oxidation, antimicrobial effects, and maintenance of sensory characteristics, benefiting the extension of shelf life. In general, plant-derived bioactive compounds are an alternative for the preservation of fish products; however, approaches to the composition of the compounds can contribute to the optimization and efficiency of the process from a technical point of view and industrial viability.
Collapse
Affiliation(s)
- Leandro Presenza
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| | - Bianca Ferraz Teixeira
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Juliana Antunes Galvão
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Thais Maria Ferreira de Souza Vieira
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
5
|
Vieira IRS, de Carvalho APAD, Conte-Junior CA. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3673-3716. [PMID: 35713102 DOI: 10.1111/1541-4337.12990] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Anna Paula Azevedo de de Carvalho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Res Int 2022; 151:110864. [PMID: 34980400 DOI: 10.1016/j.foodres.2021.110864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 μg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.
Collapse
|
8
|
Cunha LCM, Monteiro MLG, Costa‐Lima BRC, Guedes‐Oliveira JM, Rodrigues BL, Fortunato AR, Baltar JD, Tonon RV, Koutchma T, Conte‐Junior CA. Effect of microencapsulated extract of pitaya (
Hylocereus costaricensis
) peel on oxidative quality parameters of refrigerated ground pork patties subjected to UV‐C radiation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Maria Lúcia Guerra Monteiro
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
- Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
- Núcleo de Análise de Alimentos (NAL – LADETEC), Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
| | | | - Juliana Maria Guedes‐Oliveira
- Departamento de Tecnologia de Alimentos Instituto Federal de EducaçãoCiência e Tecnologia da Paraíba João Pessoa Brasil
| | - Bruna Leal Rodrigues
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
| | - Alice Raquel Fortunato
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
| | - Jéssica Diogo Baltar
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
| | | | | | - Carlos Adam Conte‐Junior
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
- Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
- Núcleo de Análise de Alimentos (NAL – LADETEC), Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz Rio de Janeiro Brasil
| |
Collapse
|
9
|
Tomé AC, Alves da Silva F, Monteiro ML, Mársico ET. Effect of Achachairu Skin on the Oxidative Stability of Mechanically Separated Tilapia Meat and a Sensory Evaluation of Its Use in a Restructured Product. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1850587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alessandra Cristina Tomé
- Department of Food Engineering, School of Agronomy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Flávio Alves da Silva
- Department of Food Engineering, School of Agronomy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Maria Lúcia Monteiro
- Departament of Food Technology, Federal Fluminense University (UFF), Rio De Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio De Janeiro (UFRJ), Rio De Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio De Janeiro (UFRJ), Rio De Janeiro, Brazil
| | | |
Collapse
|