1
|
Zhang X, Li C, Huang J, Zeng Q, Li L, Yang P, Wang P, Chu M, Luo J, Zhang H. Characterization and comparison of metabolites in colostrum from yaks, buffaloes, and cows based on UPLC-QTRAP-MS metabolomics. Food Chem 2025; 463:141345. [PMID: 39305669 DOI: 10.1016/j.foodchem.2024.141345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
Colostrum from yaks and buffaloes possesses substantial nutritional value, yet the complete array of metabolites within remains insufficiently elucidated. This study scrutinizes the metabolite profiles of yak, buffalo, and cow colostrum utilizing targeted metabolomics paired with ultra-performance liquid chromatography-tandem triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). The analysis detected 362 metabolites across all samples. Furthermore, 63, 77, and 46 differential metabolites were selected between yak and buffalo colostrum, yak and cow colostrum, and buffalo and cow colostrum, respectively. Yak colostrum notably contained higher concentrations of inositol, glycine, and carnitine, whereas buffalo colostrum was distinguished by a substantial presence of primary bile acids, which facilitate fat digestion. These findings offer profound insights into yak and buffalo colostrum, providing critical data to propel advancements in the dairy industry.
Collapse
Affiliation(s)
- Xueyan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Changhui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jiaxiang Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Qingkun Zeng
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Pengjie Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China.
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
2
|
Mota-Rojas D, Braghieri A, Ghezzi M, Ceriani MC, Martínez-Burnes J, Lendez PA, Pereira AMF, Lezama-García K, Domínguez-Oliva A, Casas-Alvarado A, Sabia E, Pacelli C, Napolitano F. Strategies and Mechanisms of Thermal Compensation in Newborn Water Buffaloes. Animals (Basel) 2023; 13:2161. [PMID: 37443964 PMCID: PMC10340076 DOI: 10.3390/ani13132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the principal causes of perinatal mortality in water buffaloes and can range from 3% to 17.9%. In ruminants, factors affecting hypothermia in newborns may be of intrinsic (e.g., level of neurodevelopment, birth weight, vitality score, amount of brown fat, skin features) or extrinsic origin (e.g., maternal care, environmental conditions, colostrum consumption). When newborn buffaloes are exposed to cold stress, thermoregulatory mechanisms such as peripheral vasoconstriction and shivering and non-shivering thermogenesis are activated to prevent hypothermia. Due to the properties of infrared thermography (IRT), as a technique that detects vasomotor changes triggered by a reduction in body temperature, evaluating the central and peripheral regions in newborn buffaloes is possible. This review aims to analyze behavioral, physiological, and morphological strategies and colostrum consumption as thermal compensation mechanisms in newborn water buffalo to cope with environmental changes affecting thermoneutrality. In addition, the importance of monitoring by IRT to identify hypothermia states will be highlighted. Going deeper into these topics related to the water buffalo is essential because, in recent years, this species has become more popular and is being bred in more geographic areas.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Emilio Sabia
- School of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Corrado Pacelli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
3
|
Lotito D, Pacifico E, Matuozzo S, Musco N, Iommelli P, Zicarelli F, Tudisco R, Infascelli F, Lombardi P. Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review. Vet Sci 2023; 10:vetsci10050358. [PMID: 37235441 DOI: 10.3390/vetsci10050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this review, the composition, characteristics, and management of dairy buffalo calves were examined and compared with bovines. The neonatal period is critical for buffalo calves and is characterized by a high mortality rate (more than 40%). The early intake of high-quality colostrum (IgG > 50 mg/mL) is the one way to improve the immune system of calves (serum IgG > 10 mg/mL after 12 h), thus increasing their chances of survival. Mainly in intensive farms, the availability of high-quality colostrum is necessary; thus, good quality colostrum is often stored to provide newborn calves which cannot be fed by their mothers. Also, the manipulation of the immunological status of animals through vaccination has been depicted since the quality of colostrum tended to be influenced by vaccination against pathogens. Buffalo breeding is constantly expanding in Italy, mainly thanks to the Mozzarella cheese production that represents the excellence of the "Made in Italy" and is exported worldwide. Indeed, high calf mortality rates directly affect the profitability of the business. For these reasons, the aim of this review was to examine specific research on buffalo colostrum that, compared with other species, are scarce. Improving the knowledge of buffalo colostrum, in terms of characteristics and management, is critical to guarantee buffalo newborns' health in order to reduce their mortality rate. Importantly, considering the knowledge on cattle valid also for buffalo is a widespread, and often erroneous, habit in several fields, including colostrum feeding. Therefore, the two species were compared in this review.
Collapse
Affiliation(s)
- Daria Lotito
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Eleonora Pacifico
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Sara Matuozzo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Fabio Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| |
Collapse
|
4
|
An Z, Luo G, Gao S, Zhang X, Chen C, Yao Z, Zhao J, Lv H, Niu K, Nie P, Yang L. Evaluation of Parity Effect on Characteristics and Minerals in Buffalo (Bubalus Bubalis) Colostrum and Mature Milk. Foods 2023; 12:foods12061321. [PMID: 36981245 PMCID: PMC10048450 DOI: 10.3390/foods12061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Colostrum is a vital performance for buffaloes and potentially functional foods in the future. Therefore, this study aimed to evaluate the difference between the parity of buffalo colostrum and mature milk. Twenty pregnant buffaloes (primiparous = 10; multiparous = 10) were assigned to the same diet prepartum and milking routine postpartum. Calves were separated from the dams immediately after birth and colostrum was harvested within 2 h, whilst mature milk was harvested at 7 days postpartum. The colostrum was analyzed for immunoglobulin G and milk composition as the mature milk. The results showed that there was a higher level of protein, solid not fat, and milk urea nitrogen (p < 0.05), with a tendency for higher total solids (p = 0.08) in primiparous buffaloes' colostrum compared with multiparous. No parity effect was observed in colostrum immunoglobulin G, fat, lactose, and yields of colostrum and composition (p > 0.05). There was no difference in mature milk composition and yield by parity affected (p > 0.05). Compared with mature milk composition, colostrum had a higher content protein, total solids, solid not fat, and milk urea nitrogen (p < 0.05); however, fat and lactose were lower than that of mature milk (p < 0.05). For minerals, multiparous buffaloes' colostrum had a higher concentration of Fe (p = 0.05), while the mature milk had higher concentrations of K and P compared with primiparous. Buffalo colostrum had higher concentrations of Na, Mg, Co, Fe, and K with a lower concentration of Ca relative to mature milk (p < 0.05). It was observed that parity affected colostrum characteristics rather than mature milk and caused subtle variations in minerals in colostrum and mature milk of buffaloes. As lactation proceeded, both milk composition and minerals in the milk changed drastically.
Collapse
Affiliation(s)
- Zhigao An
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Gan Luo
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Gao
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Zhang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiu Yao
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Junwei Zhao
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Kaifeng Niu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Nie
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People's Republic of China, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| |
Collapse
|
5
|
Rodríguez-González D, Minervino AHH, Orihuela A, Bertoni A, Morales-Canela DA, Álvarez-Macías A, José-Pérez N, Domínguez-Oliva A, Mota-Rojas D. Handling and Physiological Aspects of the Dual-Purpose Water Buffalo Production System in the Mexican Humid Tropics. Animals (Basel) 2022; 12:ani12050608. [PMID: 35268176 PMCID: PMC8909038 DOI: 10.3390/ani12050608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Buffalo is a domesticated large ruminant that can be raised for beef, dairy, and work. In some systems, these animals can be raised with a dual purpose (beef and dairy). The present review describes the characteristics of the dual-purpose water buffalo production system in Mexico’s humid wetlands. This article provides extensive information on the water buffalo and includes comparisons with other species to note similarities and differences. The aim is to describe the buffalo handling procedures used in this system, particularly during breeding, milking, confinement, and mobilization, relating them to the neurological processes involved and analyzing the productive results. Understanding these processes will allow us to obtain a more precise vision of the advantages that this species can offer, and the possible implications of the development of this type of livestock under tropical conditions. Abstract The purpose of this paper is to describe the characteristics of the dual-purpose water buffalo production based on the Mexican production system as a model in tropical wetlands. It includes a broad literature review emphasizing the most recent and specialized publications examining key findings to improve our understanding in the performance of the buffalo species (Bubalus bubalis). The complementary topics addressed include reproductive management, parturition, the dam–calf bond, milking routines, and models of confinement and management, in addition to aspects related to milk commercialization. This article summarizes the advances made to date in this production system and its current margins for improvement. The development of dual-purpose water buffalo production systems in Mexico’s tropical wetlands is a relatively recent phenomenon that has progressed and improved due to herd management. Buffaloes are an interesting alternative for dual purpose systems that offer several advantages. The lower milk production of this species compared to cattle is its main limitation. However, the properties of their milk allow one to obtain an added value and make this type of farms competitive. In synthesis, consolidating buffalo production in Mexico’s tropical wetlands will require broadening our knowledge of this species, and perfecting the most appropriate handling procedures. The activities of government agencies and processing enterprises will play vital roles in achieving the integral modernization of this potentially important economic activity.
Collapse
Affiliation(s)
- Daniela Rodríguez-González
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico;
| | - Antonio Humberto Hamad Minervino
- Laboratory of Animal Health, LARSANA, Federal University of Western Pará, UFOPA, Rua Vera Paz, s/n, Santarém 68040-255, PA, Brazil
- Correspondence: (A.H.H.M.); (D.M.-R.)
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Aldo Bertoni
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.B.); (D.A.M.-C.); (A.Á.-M.); (N.J.-P.); (A.D.-O.)
| | - Diego Armando Morales-Canela
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.B.); (D.A.M.-C.); (A.Á.-M.); (N.J.-P.); (A.D.-O.)
- Holistic Management, Savory Institute, Agriculture Science, Universidad EARTH, San José 4442-1000, Costa Rica
| | - Adolfo Álvarez-Macías
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.B.); (D.A.M.-C.); (A.Á.-M.); (N.J.-P.); (A.D.-O.)
| | - Nancy José-Pérez
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.B.); (D.A.M.-C.); (A.Á.-M.); (N.J.-P.); (A.D.-O.)
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.B.); (D.A.M.-C.); (A.Á.-M.); (N.J.-P.); (A.D.-O.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.B.); (D.A.M.-C.); (A.Á.-M.); (N.J.-P.); (A.D.-O.)
- Correspondence: (A.H.H.M.); (D.M.-R.)
| |
Collapse
|