1
|
Roobab U, Chen BR, Madni GM, Tong ZG, Zeng XA, Abdi G, Hussain S, Aadil RM. Evaluation of ultrasound and pulsed electric field combinations on the cooking Losses, texture Profile, and Taste-Related amino acids of chicken breast meat. ULTRASONICS SONOCHEMISTRY 2024; 107:106919. [PMID: 38795569 PMCID: PMC11144803 DOI: 10.1016/j.ultsonch.2024.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The search to improve the quality of meat while maintaining its nutritional value and flavor profile has driven the investigation of emerging clean-label non-thermal technologies in the field of meat processing. Ultrasound (US) and pulsed electric field (PEF) treatments have emerged as promising tools for producing high-quality meat products. This study investigated the combined effects of ultrasound and PEF on chicken breast meat quality, focusing on cooking loss, texture, and taste-related amino acids. Ultrasound (24.5 kHz, 300 W, 10 min) combined with PEF for 30 s (1.6, 3.3, and 5.0 kV/cm as US + PEF 1, US + PEF 3, and US + PEF 5, respectively) significantly reduced cooking losses (up to 28.78 %), potentially improving the product yield. Although US + PEF significantly (p < 0.05) affected pH, particularly at a higher PEF intensity (5 kV/cm), the overall color appearance of the treated meat remained unchanged. The combined treatments resulted in a tenderizing effect and decreased meat hardness, adhesiveness, and chewiness. Interestingly, US + PEF with increasing PEF intensity (1.6 to 5.0 kV/cm) led to a gradual increase in taste-related amino acids (aspartic acid, glutamic acid, etc.), potentially enhancing flavor. FTIR spectra revealed alterations in protein and lipid structures following treatment, suggesting potential modifications in meat quality. Scanning electron microscopy (SEM) revealed significant changes in the texture and structure of US + PEF-treated meat, depicting structural disruptions. Furthermore, Pearson's correlation analysis and principal component analysis (PCA) revealed a clear relationship between the physicochemical characteristics, free amino acids, color, and texture attributes of chicken meat. By optimizing treatment parameters, US + PEF could offer a novel approach to improve chicken breast meat quality.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al‑Ain, United Arab Emirates
| | - Bo-Ru Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, 528225, China
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zhang Guo Tong
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, 528225, China.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
2
|
Gul O, Saricaoglu FT, Atalar I, Gul LB, Tornuk F, Simsek S. Structural Characterization, Technofunctional and Rheological Properties of Sesame Proteins Treated by High-Intensity Ultrasound. Foods 2023; 12:foods12091791. [PMID: 37174329 PMCID: PMC10178585 DOI: 10.3390/foods12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Plant-derived proteins, such as those from sesame seeds, have the potential to be used as versatile food ingredients. End-use functionality can be further improved by high-intensity ultrasound treatments. The effects of high-intensity ultrasound on the properties of sesame protein isolates from cold-pressed sesame cake were evaluated. The SDS-PAGE demonstrated no significant changes in the molecular weight of proteins. Ultrasound treatments resulted in decreased particle size with a more uniform distribution, resulting in the exposure of hydrophobicity and free -SH groups and increased zeta potential. Although FTIR spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the amide A band was observed. The ultrasound significantly (p < 0.05) affected the secondary structure of proteins. While optical micrographics revealed a dispersed structure with smaller particles after treatments, microstructural observations indicated more rough and irregular surfaces. Water solubility was improved to 80.73% in the sample subjected to 6 min of ultrasonication. Sesame protein solutions treated for 4 and 6 min exhibited viscoelastic structure (storage modulus (G') > loss modulus (G'')). In addition, the gelation temperature of proteins decreased to about 60-65 °C with increasing treatment time. Overall, ultrasound is a useful technique for the modification of sesame protein isolates.
Collapse
Affiliation(s)
- Osman Gul
- Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ilyas Atalar
- Department of Food Engineering, Faculty of Agriculture, Eskisehir Osmangazi University, 26160 Eskisehir, Turkey
| | - Latife Betul Gul
- Department of Food Engineering, Faculty of Engineering, Giresun University, 28200 Giresun, Turkey
| | - Fatih Tornuk
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
| | - Senay Simsek
- Department of Food Science & Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Dridi C, Millette M, Aguilar B, Manus J, Salmieri S, Lacroix M. Effect of Physical and Enzymatic Pre-Treatment on the Nutritional and Functional Properties of Fermented Beverages Enriched with Cricket Proteins. Foods 2021; 10:2259. [PMID: 34681307 PMCID: PMC8534633 DOI: 10.3390/foods10102259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to evaluate the effects of γ-irradiation (IR), ultrasound (US), and combined treatments of ultrasound followed by γ-irradiation (US-IR), ultrasound followed by enzymatic hydrolysis with and without centrifugation (US-E and US-EWC, respectively), and ultrasound followed by γ-irradiation and enzymatic hydrolysis (US-IRE), on the digestibility and the nutritional value of fermented beverages containing probiotics. Results showed that US (20 min), IR (3 kGy) and US-IR (tUS = 20 min, dose = 3 kGy) treatments raised protein solubility from 11.5 to 21.5, 24.3 and 29.9%, respectively. According to our results, these treatments were accompanied by the increased amount of total sulfhydryl groups, surface hydrophobicity and changes to the secondary structure of the proteins measured by Fourier-transform infrared spectroscopy (FTIR). Fermented probiotic beverages, non-enriched (C) and enriched with untreated (Cr) or treated cricket protein with combined treatments were also evaluated for their in vitro protein digestibility. Results showed that the soluble fraction of US-IRE fermented beverage had the highest digestibility (94%) as compared to the whole fermented tested beverages. The peptides profile demonstrated that US-IRE had a low proportion of high molecular weight (MW) peptides (0.7%) and the highest proportion of low MW peptides by over 80% as compared to the other treatments.
Collapse
Affiliation(s)
- Chaima Dridi
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| | - Mathieu Millette
- Bio-K Plus International Inc., a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada;
| | - Blanca Aguilar
- Research Laboratory of Industrial Microbiology, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, 1421, Blvd, Marcelino Garcia Barragan, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico;
| | - Johanne Manus
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| | - Stephane Salmieri
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; (C.D.); (J.M.); (S.S.)
| |
Collapse
|