1
|
Wei X, Xia R, Wei C, Shang L, An J, Deng L. The Impact of Beeswax and Glycerol Monolaurate on Camellia Oil Oleogel's Formulation and Application in Food Products. Molecules 2024; 29:3192. [PMID: 38999144 PMCID: PMC11243740 DOI: 10.3390/molecules29133192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
This study assessed the nutritional profile of camellia oil through its fatty acid composition, highlighting its high oleic acid content (81.4%), followed by linoleic (7.99%) and palmitic acids (7.74%), demonstrating its excellence as an edible oil source. The impact of beeswax (BW) and glycerol monolaurate (GML) on camellia oil oleogels was investigated, revealing that increasing BW or GML concentrations enhanced hardness and springiness, with 10% BW oleogel exhibiting the highest hardness and springiness. FTIR results suggested that the structure of the oleogels was formed by interactions between molecules without altering the chemical composition. In biscuits, 10% BW oleogel provided superior crispness, expansion ratio, texture, and taste, whereas GML imparted a distinct odor. In sausages, no significant differences were observed in color, water retention, and pH between the control and replacement groups; however, the BW group scored higher than the GML group in the sensory evaluation. The findings suggest that the BW oleogel is an effective fat substitute in biscuits and sausages, promoting the application of camellia oil in food products.
Collapse
Affiliation(s)
- Xingchen Wei
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Ronghui Xia
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Chenxi Wei
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Longchen Shang
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China;
| | - Jianhui An
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Lingli Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China;
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
2
|
Li H, Shen S, Yu K, Wang H, Fu J. Construction of porous structure-based carboxymethyl chitosan/ sodium alginate/ tea polyphenols for wound dressing. Int J Biol Macromol 2023; 233:123404. [PMID: 36706879 DOI: 10.1016/j.ijbiomac.2023.123404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Polysaccharide-based materials with porous structure were selected as the basic skeleton to prepare a flexible and biodegradable wound dressing. The carboxymethyl chitosan/sodium alginate/tea polyphenols (CC/SA/TP) with a two-layer porous structure exhibits a variety of performances. The specific combined structure with ordered and lamellar porous structure was constructed by high-speed homogenized foaming, Ca2+ crosslinking and two-step freeze-drying methods. Moreover, the CC/SA/TP porous structure owns better shape retention and recovery because of the 3D network with an "egg-box" structure formed by impregnation. Tea polyphenols are efficiently encapsulated into a porous structure and released in a sustained pattern. After storing for 60 days, the CC/SA/TP porous structure still exhibits great suitable water vapor transmittance, efficient antibacterial activity and ultrarapid antioxidant activity. Meanwhile, the relatively low differential blood clotting index (BCI) and cytotoxicity of the CC/SA/TP porous structure indicate that it possesses the possibility of adjusting and controlling wound bleeding. The test results reveal that the CC/SA/TP porous structure might be expected to play a great potential role in biomedical applications of wound dressing.
Collapse
Affiliation(s)
- Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Shen Shen
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Kejing Yu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Lee H, Lim T, Kim J, Kim RH, Hwang KT. Phenolics in buckwheat hull extracts and their antioxidant activities on bulk oil and emulsions. J Food Sci 2022; 87:2831-2846. [PMID: 35661363 DOI: 10.1111/1750-3841.16175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Buckwheat hulls are discarded as waste, although they have more phenolic compounds than buckwheat groats. The antioxidant activities of buckwheat hull extracts prepared with water, 50% ethanol, and 100% ethanol were investigated in bulk oil, oil-in-water (O/W), and water-in-oil (W/O) emulsions. The relationship between the phenolic compositions of the extracts and their antioxidant activities in the three different lipid systems was also evaluated. Fifty percent ethanol extract had the highest total phenolic content (327 mg gallic acid equivalent [GAE]/g extract) followed by water and 100% ethanol extracts (211 and 163 mg GAE/g extract, respectively). The total oxidation rate (k) was not significantly different among the bulk oils added with the buckwheat hull extracts. However, in the O/W emulsion, the k was more reduced by the 50% and 100% ethanol extracts than by the water extract at the concentration of 100 µg GAE/g (2.9, 2.8, and 3.7 Totox/day, respectively). The k of the W/O emulsion was more reduced by the 100% ethanol extract than by the water and 50% ethanol extract at the concentration of 100 µg GAE/g (3.8, 4.7, and 4.5 Totox/day, respectively). Multivariate statistical analysis revealed that the contents of phenolic acids and their derivatives were the highest in the water extract among the extracts, while the contents of flavonoid glycosides and methylated polyphenols were the highest in the 50% and 100% ethanol extracts, respectively. The results suggest that flavonoid glycosides and methylated polyphenols could be potential candidates for retarding the oxidation of the emulsion system. PRACTICAL APPLICATION: Buckwheat hull extracts could retard lipid oxidation. Flavonoid glycosides and methylated polyphenols in buckwheat hull extracts may have an antioxidative effect on lipids. Thus, buckwheat hulls could be used as an antioxidant in lipid systems, as flavonoid glycosides and methylated polyphenols are properly extracted from buckwheat hulls.
Collapse
Affiliation(s)
- Haeseong Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Taehwan Lim
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jaecheol Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Liu Y, Hua L, Zhu W, Liu C, You H, Chen H. A hybrid boronate affinity probe for the selective detection of cis-diols containing compounds in tea beverages. LUMINESCENCE 2022; 37:1018-1024. [PMID: 35416384 DOI: 10.1002/bio.4256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Abstract
UiO-66-NH2 nanocomposite was post-modified with 4-mercaptophenylboronic acid (MPBA) by the method of in-situ hybridization reaction. The hybrid boronate affinity material UiO-NH2 @P (TEPIC-co-MPBA) was characterized by Scanning electron microscope, X-ray diffraction, Fiurier transform infrared spectroscopy. It was applied as fluorescent probe for the detection of cis-diols containing compounds based on the boronate affinity mechanism, and exhibited high specific selectively. The proposed method exhibited good liearnity for the detection of catechol in the range of 0.50-8.00 μg·mL-1 . The detection limit was 0.13 μg·mL-1 . The tactic was successfully applied to analyze the total polyphenols in tea beverages for catechol, and relative recovery was in 98.86-106.00%. Therefore, this work provided a promising strategy for recognization of cis-diols containing compounds.
Collapse
Affiliation(s)
- Yunchun Liu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo-Biosensing, Anhui Provincial Engineering Labtory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, PR China
| | - Liyun Hua
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo-Biosensing, Anhui Provincial Engineering Labtory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, PR China
| | - Wanru Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo-Biosensing, Anhui Provincial Engineering Labtory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, PR China
| | - Chen Liu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo-Biosensing, Anhui Provincial Engineering Labtory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, PR China
| | - Hongrui You
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo-Biosensing, Anhui Provincial Engineering Labtory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, PR China
| | - Hongqi Chen
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo-Biosensing, Anhui Provincial Engineering Labtory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, PR China
| |
Collapse
|
5
|
Yan B, Chen ZS, Hu Y, Yong Q. Insight in the Recent Application of Polyphenols From Biomass. Front Bioeng Biotechnol 2021; 9:753898. [PMID: 34589477 PMCID: PMC8473751 DOI: 10.3389/fbioe.2021.753898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Biomass polyphenols are bio-active macromolecules with distinct chemical structures in a variety of biomass. In recent years, the study of biomass polyphenols and their application in food and medicine fields has become a research hotspot, which predominantly focuses on the preparation, purification, structural identifications, and measurements of biological activities. Many studies describe methodologies for extraction and application of polyphenols, but comprehensive work to review its physiological activities like drugs and health products are lacking. This paper comprehensively unlocks the bioactivities of antioxidant, antibacterial, antitumor, anticancer, neuroprotection, control of blood sugar, regulation of blood fat, and promotion of gastrointestinal health functions of polyphenols from different biomass sources. This review will serve as an illuminating resource for the global scientific community, especially for those who are actively working to promote the advances of the polyphenols research field.
Collapse
Affiliation(s)
- Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhefan Stephen Chen
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Yingying Hu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|