1
|
Stabnikova O, Khonkiv M, Kovshar I, Stabnikov V. Biosynthesis of selenium nanoparticles by lactic acid bacteria and areas of their possible applications. World J Microbiol Biotechnol 2023; 39:230. [PMID: 37341841 DOI: 10.1007/s11274-023-03673-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Lactic acid bacteria, being generally recognized as safe, are the preferred choice among other microbial producers of selenium nanoparticles. For successful production of SeNPs, it is necessary to take into account the physiological properties of the bacterium used as a biotransformer of inorganic forms of selenium in Se0. The antimicrobial and antioxidant activity of SeNPs allows to use them in the form of pure nanoparticles or biomass of lactic acid bacteria enriched with selenium in preparation of food, in agriculture, aquaculture, medicine, veterinary, and manufacturing of packing materials for food products. To attract attention to the promising new directions of lactic acid bacteria applications and to accelerate their implementation, the examples of the use of SeNPs synthesized by lactic acid bacteria in the mentioned above areas of human activity are described.
Collapse
Affiliation(s)
- Olena Stabnikova
- Advanced Research Laboratory, National University of Food Technologies, Kiev, Ukraine.
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine.
| | - Myroslav Khonkiv
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| | - Iryna Kovshar
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| | - Viktor Stabnikov
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| |
Collapse
|
2
|
Yanez-Lemus F, Moraga R, Smith CT, Aguayo P, Sánchez-Alonzo K, García-Cancino A, Valenzuela A, Campos VL. Selenium Nanoparticle-Enriched and Potential Probiotic, Lactiplantibacillus plantarum S14 Strain, a Diet Supplement Beneficial for Rainbow Trout. BIOLOGY 2022; 11:biology11101523. [PMID: 36290428 PMCID: PMC9598509 DOI: 10.3390/biology11101523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Potential probiotic bacteria for aquacultured species should be naturally occurring and non-pathogenic in the native habitat of the host, easy to culture, and able to grow in the intestine of the host. Se nanoparticles (Se0Nps) can be effectively used as a growth promoter, antioxidant, and immunostimulant agent in aquacultured species. Dietary supplementation with probiotics and Se0Nps contributes to the balance of the intestinal microbiota and probiotics have been proposed as an alternative to chemotherapeutants and antibiotics to prevent disease outbreaks, to mitigate the negative effects of stress and to strengthen the antioxidant capacity and the immune system of fish. Our results reported the isolation of a probiotic strain obtained from healthy rainbow trout. The strain was identified as Lactiplantibacillus plantarum species. This strain showed characteristics typically present in probiotics and, concurrently, the capacity to biosynthesize Se0Nps. The supplementation of the rainbow trout fish diet with LABS14-Se0Nps showed a positive effect on innate immune response parameters, oxidative status, well-being, and a better growth performance than the supplementation of the diet with the bacterium LABS14 alone. Therefore, we propose LABS14-Se0Nps as a promising alternative for the nutritional supplementation for rainbow trout or even other salmonids. Abstract Lactic acid bacteria (LAB), obtained from rainbow trout (Oncorhynchus mykiss) intestine, were cultured in MRS medium and probiotic candidates. Concurrently, producers of elemental selenium nanoparticles (Se0Nps) were selected. Probiotic candidates were subjected to morphological characterization and the following tests: antibacterial activity, antibiotic susceptibility, hemolytic activity, catalase, hydrophobicity, viability at low pH, and tolerance to bile salts. Two LAB strains (S4 and S14) satisfied the characteristics of potential probiotics, but only strain S14 reduced selenite to biosynthesize Se0Nps. S14 strain was identified, by 16S rDNA analysis, as Lactiplantibacillus plantarum. Electron microscopy showed Se0Nps on the surface of S14 cells. Rainbow trout diet was supplemented (108 CFU g−1 feed) with Se0Nps-enriched L. plantarum S14 (LABS14-Se0Nps) or L. plantarum S14 alone (LABS14) for 30 days. At days 0, 15, and 30, samples (blood, liver, and dorsal muscle) were obtained from both groups, plus controls lacking diet supplementation. Fish receiving LABS14-Se0Nps for 30 days improved respiratory burst and plasmatic lysozyme, (innate immune response) and glutathione peroxidase (GPX) (oxidative status) activities and productive parameters when compared to controls. The same parameters also improved when compared to fish receiving LABS14, but significant only for plasmatic and muscle GPX. Therefore, Se0Nps-enriched L. plantarum S14 may be a promising alternative for rainbow trout nutritional supplementation.
Collapse
Affiliation(s)
- Francisco Yanez-Lemus
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Rubén Moraga
- Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile
| | - Carlos T. Smith
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Paulina Aguayo
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile
- Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Chacabuco 539, Concepcion 3349001, Chile
| | - Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastian, Concepcion 4080871, Chile
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Ariel Valenzuela
- Laboratory of Pisciculture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Víctor L. Campos
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Correspondence: ; Tel.: +56-41-2204144
| |
Collapse
|
3
|
Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case. COATINGS 2022. [DOI: 10.3390/coatings12060838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Edible coatings and films appear to be a very promising strategy for delivering bioactive compounds and probiotics in food systems when direct incorporation/inoculation is not an option. The production of dairy products has undergone radical modifications thanks to nanotechnology. Despite being a relatively new occurrence in the dairy sector, nanotechnology has quickly become a popular means of increasing the bioavailability and favorable health effects of a variety of bioactive components. The present review describes, in detail, the various processes being practiced worldwide for yoghurt preparation, microencapsulation, and nanotechnology-based approaches for preserving and/or enriching yoghurt with biologically, and its effect on health and in treating various diseases. In the case of yoghurt, as a perfect medium for functional ingredients supplementation, different gums (e.g., alginate, xanthan gum, and gum arabic), alone or in combination with maltodextrin, seem to be excellent coatings materials to encapsulate functional ingredients. Edible coatings and films are ideal carriers of bioactive compounds, such as antioxidants, antimicrobials, flavors, and probiotics, to improve the quality of dairy food products. Yoghurt is regarded as a functional superfood with a variety of health benefits, especially with a high importance for women’s health, as a probiotic. Consumption of yoghurt with certain types of probiotic strains which contain γ-linolenic acid or PUFA can help solve healthy problems or alleviate different symptoms, and this review will be shed light on the latest studies that have focused on the impact of functional yoghurt on women’s health. Recently, it has been discovered that fermented milk products effectively prevent influenza and COVID-19 viruses. Bioactive molecules from yoghurt are quite effective in treating various inflammations, including so-called “cytokine storms” (hypercytokinaemia) caused by COVID-19.
Collapse
|
4
|
Zommara M, Omran M, Ghanimah M. Milk permeate medium for the production of selenium nanoparticles by lactic acid bacteria. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohsen Zommara
- Department of Dairy Science, Faculty of Agriculture Kafrelsheikh University Kafr El‐Sheikh 33516 Egypt
| | - Mayada Omran
- Food Technology Research Institute Agriculture Research Centre 9 El Gamma Street Giza Egypt
| | - Mohamed Ghanimah
- Department of Dairy Science, Faculty of Agriculture Kafrelsheikh University Kafr El‐Sheikh 33516 Egypt
| |
Collapse
|