1
|
da Silva TEB, de Oliveira YP, de Carvalho LBA, Dos Santos JAB, Dos Santos Lima M, Fernandes R, de Assis CF, Passos TS. Nanoparticles based on whey and soy proteins enhance the antioxidant activity of phenolic compound extract from Cantaloupe melon pulp flour (Cucumis melo L.). Food Chem 2025; 464:141738. [PMID: 39476578 DOI: 10.1016/j.foodchem.2024.141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024]
Abstract
The phenolic compounds (PC) present in the pulp flour of Cantaloupe melon (Cucumis melo L.) were encapsulated in whey protein isolate (EPWI), whey protein concentrate (EPWC), and soy protein isolate (EPSP) by nanoprecipitation to evaluate the effect on the antioxidant potential in vitro. The crude extract was evaluated for the content and profile of PC, presenting 750 ± 60.73 mg EAG/100 g and ten different types with emphasis on procyanidin B1 (213.9 ± 33.23 mg/kg) and fumaric acid (181.6 ± 30.55 mg/kg). The characterization indicated the incorporation efficiency of PC in the range of 74.10 ± 0.28-90.60 ± 6.52 %, formation of spherical particles with smooth surfaces, average diameters between 74.90 ± 10.78-96.57 ± 10.17 nm, amorphous structure, and chemical interactions between the materials, justifying the potentiation of the antioxidant activity of the crude extract by up to six times (p < 0.05). Therefore, nanoencapsulation using protein materials and the nanoprecipitation technique is a promising strategy to promote the encapsulation of PC from Cantaloupe melon.
Collapse
Affiliation(s)
- Thais Emili Bezerra da Silva
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Yasmim Pessoa de Oliveira
- Undergraduate Course in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Jéssica Anarellis Barbosa Dos Santos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE 56316-686, Brazil
| | - Rafael Fernandes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59084-100, Brazil
| | - Thaís Souza Passos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| |
Collapse
|
2
|
Effects of Different Drying Methods on the Drying Characteristics and Quality of Codonopsis pilosulae Slices. Foods 2023; 12:foods12061323. [PMID: 36981249 PMCID: PMC10048468 DOI: 10.3390/foods12061323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The present study aimed to investigate the effect of rotary microwave vacuum drying (RMVD), radio frequency vacuum drying (RFVD), vacuum far infrared drying (VFID), vacuum drying (VD), hot air drying (HD) and natural drying (ND) on the drying characteristics, active ingredients and microstructure of Codonopsis pilosulae slices. Compared with the fitting results of the four models, the Weibull model is the most suitable drying model for Codonopsis. The RFVD and HD color difference values were smaller compared to ND. The effective moisture diffusivity (Deff) under different drying methods was between 0.06 × 10−8 m2/s and 3.95 × 10−8 m2/s. RMVD-dried products had the shortest drying time and retained more active ingredients. The microstructure analysis revealed that the porous structure of RMVD is more favorable for water migration. RMVD is a promising dehydration method for obtaining high-value-added dried Codonopsis products.
Collapse
|
3
|
Santos Y, Facchinatto W, Rochetti A, Carvalho R, Le Feunteun S, Fukumasu H, Morzel M, Colnago L, Vanin F. Systemic characterization of Pupunha (Bactris gasipaes) flour with views of polyphenol content on cytotoxicity and protein in vitro digestion. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Rodríguez-Rico D, Sáenz-Esqueda MDLÁ, Meza-Velázquez JA, Martínez-García JJ, Quezada-Rivera JJ, Umaña MM, Minjares-Fuentes R. High-Intensity Ultrasound Processing Enhances the Bioactive Compounds, Antioxidant Capacity and Microbiological Quality of Melon ( Cucumis melo) Juice. Foods 2022; 11:foods11172648. [PMID: 36076833 PMCID: PMC9455593 DOI: 10.3390/foods11172648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The bioactive compounds, antioxidant capacity and microbiological quality of melon juice processed by high-intensity ultrasound (HIUS) were studied. Melon juice was processed at two ultrasound intensities (27 and 52 W/cm2) for two different processing times (10 and 30 min) using two duty cycles (30 and 75%). Unprocessed juice was taken as a control. Total carotenoids and total phenolic compounds (TPC) were the bioactive compounds analyzed while the antioxidant capacity was determined by DPPH, ABTS and FRAP assays. The microbiological quality was tested by counting the aerobic and coliforms count as well as molds and yeasts. Total carotenoids increased by up to 42% while TPC decreased by 33% as a consequence of HIUS processing regarding control juice (carotenoids: 23 μg/g, TPC: 1.1 mg GAE/g), gallic acid and syringic acid being the only phenolic compounds identified. The antioxidant capacity of melon juice was enhanced by HIUS, achieving values of 45% and 20% of DPPH and ABTS inhibition, respectively, while >120 mg TE/100 g was determined by FRAP assay. Further, the microbial load of melon juice was significantly reduced by HIUS processing, coliforms and molds being the most sensitive. Thus, the HIUS could be an excellent alternative supportive the deep-processing of melon products.
Collapse
Affiliation(s)
- Daniel Rodríguez-Rico
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | | | | | - Juan José Martínez-García
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | | | - Mónica M. Umaña
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Rafael Minjares-Fuentes
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
- Correspondence:
| |
Collapse
|
5
|
Wang Y, Lei Z, Ye R, Zhou W, Zhou Y, Zou Z, Li J, Yi L, Dai Z. Effects of Cadmium on Physiochemistry and Bioactive Substances of Muskmelon ( Cucumis melo L.). Molecules 2022; 27:molecules27092913. [PMID: 35566265 PMCID: PMC9101123 DOI: 10.3390/molecules27092913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Muskmelon pedicel is the fruit stalk of muskmelon and one of the traditional Chinese medicines, which can be used to treat jaundice, diabetes and neuropathy. However, in recent years, agricultural soil heavy metal cadmium (Cd) pollution has become serious, coupled with the imperfect sales management of herbal medicine, increasing the potential health risk of contaminated herbal medicine in the human body. In this paper, the comprehensive quality of contaminated muskmelon was tested. The results showed that Cd stress significantly inhibited the growth of muskmelon plants, reduced the anthocyanin and chlorophyll contents, and increased the fruit size and sweetness of muskmelon. In addition, heavy metal Cd can also cause oxidative stress in plants, resulting in a series of changes in antioxidant enzyme activities. In the experimental group, the content of polyphenols and saponins increased by 27.02% and 23.92%, respectively, after high-concentration Cd treatment, which may be a mechanism of plant resistance to stress. This paper reveals that the content of bioactive substances in Chinese herbal medicine is high, but the harm in heavy metals cannot be underestimated, which should be paid attention to by relevant departments.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Zhen Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Rongbin Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Wei Zhou
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
- Correspondence: (J.L.); (Z.D.)
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
- Correspondence: (J.L.); (Z.D.)
| |
Collapse
|
6
|
Yilmaz A, Alibas I, Asik BB. The effect of drying methods on the color, chlorophyll, total phenolic, flavonoids, and macro and micronutrients of thyme plant. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Aslihan Yilmaz
- Faculty of Agriculture Department of Biosystems Engineering Bursa Uludag University Bursa Turkey
| | - Ilknur Alibas
- Faculty of Agriculture Department of Biosystems Engineering Bursa Uludag University Bursa Turkey
| | - Baris Bulent Asik
- Faculty of Agriculture Department of Soil Science and Plant Nutrition Bursa Uludag University Bursa Turkey
| |
Collapse
|