1
|
Nouska C, Irakli M, Palakas P, Lytou AE, Bouloumpasi E, Biliaderis CG, Lazaridou A. Influence of sesame cake on physicochemical, antioxidant and sensorial characteristics of fortified wheat breads. Food Res Int 2024; 178:113980. [PMID: 38309883 DOI: 10.1016/j.foodres.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
Incorporation of two sesame cake preparations, differing in fat, 11 % (LF) and 17 % (HF), and protein, 51 % (LF) and 44 % (HF), contents, respectively, into breads at 6, 12 and 20 % wheat flour substitution levels, led to enriched end-products with antioxidants, suitable also to carry the 'high protein' and 'fiber source' nutrition claims (at ≥ 12 % substitution level). Sesame cake decreased wheat dough resistance to mixing and extension, and peak viscosity (empirical rheology), in a concentration-dependent manner, being more pronounced for LF formulations. Breads with LF incorporation ≥ 12 % had lower specific volumes and harder crumb (texture analysis) throughout storage, than control (100 % wheat flour); however, such adverse effects were diminished in HF bread formulations due to the plasticizing and emulsifying action of the sesame cake fat. Calorimetry showed that the sesame cake had no effect on starch retrogradation, but enhanced amylose-lipid complex formation. Antioxidant activity (ABTS, DPPH and FRAP assays), and phenolic acids (ferulic, p-coumaric and sinapic) and lignan (sesaminol glucosides and sesamolin) contents, determined by HPLC-DAD-MS, were higher in LF breads than their HF counterparts. The presence of some sulfur (off-flavor) and pyrazine (nutty flavor) compounds (SPME-GC-MS), as well as the sesame flavor and bitterness (sensory analysis) were of higher intensity in HF breads, while the 6 % LF product received the highest overall acceptability score among all fortified products. Overall, the sesame cake can be a promising ingredient for production of functional wheat bread depending on its composition and fortification level.
Collapse
Affiliation(s)
- Chrysanthi Nouska
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece
| | - Maria Irakli
- Hellenic Agricultural Organization-DIMITRA, Institute of Plant Breeding and Genetic Resources, 57001 Thermi, Thessaloniki, Greece
| | - Prokopis Palakas
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece
| | - Anastasia E Lytou
- Hellenic Agricultural Organization-DIMITRA, Institute of Plant Breeding and Genetic Resources, 57001 Thermi, Thessaloniki, Greece
| | - Elisavet Bouloumpasi
- Hellenic Agricultural Organization-DIMITRA, Institute of Plant Breeding and Genetic Resources, 57001 Thermi, Thessaloniki, Greece
| | - Costas G Biliaderis
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece.
| | - Athina Lazaridou
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece.
| |
Collapse
|
2
|
Trad S, Chaabani E, Aidi Wannes W, Dakhlaoui S, Nait Mohamed S, Khammessi S, Hammami M, Bourgou S, Saidani Tounsi M, Fabiano-Tixier AS, Bettaieb Rebey I. Quality of Edible Sesame Oil as Obtained by Green Solvents: In Silico versus Experimental Screening Approaches. Foods 2023; 12:3263. [PMID: 37685195 PMCID: PMC10487213 DOI: 10.3390/foods12173263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The present study aimed to investigate the qualitative and quantitative performance of five green solvents, namely 2-methyltetrahydrofuran (MeTHF), cyclopentyl methyl ether (CPME), p-cymene, d-limonene and ethanol to substitute n-hexane, for sesame seed oil extraction. In fact, both CPME and MeTHF gave higher crude yields than n-hexane (58.82, 54.91 and 50.84%, respectively). The fatty acid profile of the sesame seed oils remained constant across all the solvent systems, with a predominance of oleic acid (39.27-44.35%) and linoleic acid (38.88-43.99%). The total sterols gained the upmost amount with CPME (785 mg/100 g oil) and MeTHF (641 mg/100 g oil). CPME and MeTHF were also characterized by the optimum content of tocopherols (52.3 and 50.6 mg/100 g oil, respectively). The highest contents of total phenols in the sesame seed oils were extracted by CPME (23.51 mg GAE/g) and MeTHF (22.53 mg GAE/g) as compared to the other solvents, especially n-hexane (8 mg GAE/g). Additionally, sesame seed oils extracted by MeTHF and CPME also had the highest antioxidant and anti-inflammatory properties as compared to the other green solvents and n-hexane, encouraging their manufacturing use for sesame seed oil extraction.
Collapse
Affiliation(s)
- Sinda Trad
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| | - Emna Chaabani
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, 84000 Avignon, France
| | - Wissem Aidi Wannes
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| | - Sarra Dakhlaoui
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| | - Salma Nait Mohamed
- Laboratory of Olive Biotechnology, Borj Cedria Biotechnology Center, Hammam-Lif 2050, Tunisia;
| | - Saber Khammessi
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| | - Soumaya Bourgou
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| | - Anne-Sylvie Fabiano-Tixier
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, 84000 Avignon, France
| | - Iness Bettaieb Rebey
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (S.T.); (W.A.W.); (S.D.)
| |
Collapse
|
3
|
LU CC, LI X, SHEN WL, LIU HM, WANG XD. Studies on the highly efficient catalyzation of sesamin to asarinin by phosphotungstic acid. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Xin LI
- Henan University of Technology, China
| | | | | | | |
Collapse
|
4
|
Olalere OA, Gan C, Taiwo AE, Alenezi H, Maqsood S, Adeyi O. Investigating the Microwave Parameters Correlating Effects on Total Recovery of Bioactive Alkaloids from Sesame Leaves using Orthogonal Matrix and Artificial Neural Network Integration. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olusegun Abayomi Olalere
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia University Innovation Incubator Building Sains@USM, Lebuh Bukit Jambul Penang Malaysia
| | - Chee‐Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia University Innovation Incubator Building Sains@USM, Lebuh Bukit Jambul Penang Malaysia
| | - Abiola Ezekiel Taiwo
- Department of Chemical Engineering Landmark University Omu‐Aran Kwara State Nigeria
| | - Hamoud Alenezi
- Process Systems Engineering Centre (PROSPECT) Research Institute for Sustainable Environment School of Chemical and Energy Engineering, Universiti Teknologi Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University Al Ain United Arab Emirates
| | - Oladayo Adeyi
- Department of Chemical Engineering Michael Okpara University of Agriculture Umudike Abia State Nigeria
| |
Collapse
|