1
|
Soodbar M, Mojgani N, Sanjabi MR, Mirdamadi S, Soltani M. Physicochemical, Antioxidant Characteristics and Sensory Evaluation of Functional Pro-Biogenic Ice Cream. Food Sci Nutr 2025; 13:e4619. [PMID: 39803295 PMCID: PMC11717036 DOI: 10.1002/fsn3.4619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Pro-biogenic is a recent terminology widely used for products that combine biogenic materials and probiotics which has made progressive improvement in a new era of research on functional foods. This study aimed to develop functional ice cream with Bacillus coagulans and propolis extract (PE) as a biogenic part to develop ice cream's physiochemical and antioxidant characteristics. Five probiotic ice cream samples were prepared using different levels of PE powder (0%, 0.2%, 0.4%, 0.6%, and 0.8% w/w), and the physicochemical, total phenol content (TPC), antioxidant and sensory properties, and probiotic survival of the samples were examined. The study found that PE levels did not significantly impact fat, protein, carbohydrate, and ash content, overrun, melting rate, and adhesiveness of probiotic ice cream, but increased dry matter, apparent viscosity, and hardness. Adding PE to freeze-storage samples significantly (p < 0.05) reduced pH and improved TPC and antioxidant activity. The prepared ice cream containing probiotic bacteria and PE extracts, despite their darker and yellower color, were acceptable based on sensory evaluation. Furthermore, the survival of probiotic bacteria in the ice cream, with different levels of PE appeared to be in acceptable limits (107 CFU/g). The findings of the research indicated that the pro-biogenic ice cream has good functionality and incorporating a PE aside probiotic could improve physiochemical and antioxidant characteristics which can be used as a value-added ingredient in the formulation of functional pro-biogenic ice creams.
Collapse
Affiliation(s)
- Mehri Soodbar
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Naheed Mojgani
- Biotechnology DepartmentRazi Vaccine & Serum Research Institute‐Agriculture Research Education and Extension Organization (AREEO)KarajIran
| | - Mohammad Reza Sanjabi
- Agriculture Research InstituteIranian Research Organization for Science and Technology (IROST)TehranIran
| | - Saeed Mirdamadi
- Department of BiotechnologyIranian Research Organization for Science and Technology (IROST)TehranIran
| | - Mostafa Soltani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical ScienceIslamic Azad UniversityTehranIran
| |
Collapse
|
2
|
Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Kamali Rousta L, Rafiee Z, Jalali-Jivan M, Kharazmi MS, Jafari SM. Improving the thermal stability of natural bioactive ingredients via encapsulation technology. Crit Rev Food Sci Nutr 2022; 64:2824-2846. [PMID: 36178297 DOI: 10.1080/10408398.2022.2127145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds (bioactives) such as phenolic acids, coumarins, flavonoids, lignans and carotenoids have a marked improvement effect on human health by acting on body tissues or cells. Nowadays, with increasing levels of knowledge, consumers prefer foods that can provide bioactives beside the necessary nutrients (e.g., vitamins, essential fatty acids and minerals). However, an important barrier for incorporating bioactives into foods is their low thermal stability. Nevertheless, thermal processing is widely used by the food industries to achieve food safety and desired texture. The aim of this work is to give an overview of encapsulation technology to improve thermal stability of bioactives incorporated into different food products. Almost all thermal analysis and non-thermal methods in the literature suggest that incorporation of bioactives into different walls can effectively improve the thermal stability of bioactives. The level of such thermal enhancement depends on the strength of the bioactive interaction and wall molecules. Furthermore, contradictory results have been reported in relation to the effect of encapsulation technique using the same wall on thermal stability of bioactives. To date, the potential to increase the thermal resistance of various bioactives by gums, carbohydrates, and proteins have been extensively studied. However, further studies on the comparison of walls and encapsulation methods to form thermally stable carriers seem to be needed. In this regard, the same nature of bioactives and the specific protocol in the report of study results should be considered to compare the data and select the optimum conditions of encapsulation to achieve maximum thermal stability.
Collapse
Affiliation(s)
- Samad Bodbodak
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Leila Kamali Rousta
- Department of Food Research and Development, Zar Research and Industrial Development Group, Alborz, Iran
| | - Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Rahim MA, Shoukat A, Khalid W, Ejaz A, Itrat N, Majeed I, Koraqi H, Imran M, Nisa MU, Nazir A, Alansari WS, Eskandrani AA, Shamlan G, AL-Farga A. A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed ( Nigella sativa). Foods 2022; 11:2826. [PMID: 36140949 PMCID: PMC9498113 DOI: 10.3390/foods11182826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The current review investigates the effects of black seed (Nigella sativa) on human health, which is also used to encapsulate and oxidative stable in different food products. In recent decades, many extraction methods, such as cold pressing, supercritical fluid extraction, Soxhlet extraction, hydro distillation (HD) method, microwave-assisted extraction (MAE), ultrasound-assisted extraction, steam distillation, and accelerated solvent extraction (ASE) have been used to extract the oils from black seeds under optimal conditions. Black seed oil contains essential fatty acids, in which the major fatty acids are linoleic, oleic, and palmitic acids. The oxidative stability of black seed oil is very low, due to various environmental conditions or factors (temperature and light) affecting the stability. The oxidative stability of black seed oil has been increased by using encapsulation methods, including nanoprecipitation, ultra-sonication, spray-drying, nanoprecipitation, electrohydrodynamic, atomization, freeze-drying, a electrospray technique, and coaxial electrospraying. Black seed, oil, microcapsules, and their components have been used in various food processing, pharmaceutical, nutraceutical, and cosmetics industries as functional ingredients for multiple purposes. Black seed and oil contain thymoquinone as a major component, which has anti-oxidant, -diabetic, -inflammatory, -cancer, -viral, and -microbial properties, due to its phenolic compounds. Many clinical and experimental studies have indicated that the black seed and their by-products can be used to reduce the risk of cardiovascular diseases, chronic cancer, diabetes, oxidative stress, polycystic ovary syndrome, metabolic disorders, hypertension, asthma, and skin disorders. In this review, we are focusing on black seed oil composition and increasing the stability using different encapsulation methods. It is used in various food products to increase the human nutrition and health properties.
Collapse
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Aurbab Shoukat
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Afaf Ejaz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nizwa Itrat
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Majeed
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Anum Nazir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|