1
|
Boylu M, Hitka G, Kenesei G. Sausage Quality during Storage under the Partial Substitution of Meat with Fermented Oyster Mushrooms. Foods 2024; 13:2115. [PMID: 38998621 PMCID: PMC11241733 DOI: 10.3390/foods13132115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
The increasing global demand for meat production, driven by a rapidly expanding population and changing dietary preferences has prompted the search for protein-rich, sustainable, and healthier meat alternatives. In this context, edible mushrooms are viewed as advantageous substitutes for meat, offering a viable solution. This study aimed to investigate the effects of partially replacing (25% and 50%) pork meat in sausage samples with fermented oyster mushrooms (Pleurotus ostreatus), which were subjected to various pretreatments. Six different pretreatments were applied to fresh oyster mushrooms as follows: blanching in water, steaming, oven-cooking, microwave treatment, high hydrostatic pressure treatment, and ultraviolet light treatment. The effects of mushroom replacement on the moisture, pH, lipid oxidation, color, and textural properties of sausages during the 4-week refrigerated storage period were evaluated. The results revealed that replacing pork meat with fermented oyster mushrooms resulted in an increase in moisture content and b* values and a decrease in pH, L*, a*, and shear force values, proportional to the mushroom percentage. The lipid oxidation findings suggest that the antioxidant capabilities of fermented oyster mushrooms were influenced by the pretreatment methods applied to the mushrooms, exhibiting varying levels of effectiveness.
Collapse
Affiliation(s)
- Meltem Boylu
- Department of Livestock Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary;
| | - Géza Hitka
- Department of Postharvest, Commerce, Supply Chain and Sensory Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary;
| | - György Kenesei
- Department of Livestock Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary;
| |
Collapse
|
2
|
Asdullah HU, Chen F, Hassan MA, Abbas A, Sajad S, Rafiq M, Raza MA, Tahir A, Wang D, Chen Y. Recent advances and role of melatonin in post-harvest quality preservation of shiitake ( Lentinula edodes). Front Nutr 2024; 11:1348235. [PMID: 38571753 PMCID: PMC10987784 DOI: 10.3389/fnut.2024.1348235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Shiitake mushrooms are renowned for their popularity and robust nutritional value, are susceptible to spoilage due to their inherent biodegradability. Nevertheless, because of their lack of protection, these mushrooms have a short shelf life. Throughout the post-harvest phase, mushrooms experience a persistent decline in quality. This is evidenced by changes such as discoloration, reduced moisture content, texture changes, an increase in microbial count, and the depletion of nutrients and flavor. Ensuring postharvest quality preservation and prolonging mushroom shelf life necessitates the utilization of post-harvest preservation techniques, including physical, chemical, and thermal processes. This review provides a comprehensive overview of the deterioration processes affecting mushroom quality, covering elements such as moisture loss, discoloration, texture alterations, increased microbial count, and the depletion of nutrients and flavor. It also explores the key factors influencing these processes, such as temperature, relative humidity, water activity, and respiration rate. Furthermore, the review delves into recent progress in preserving mushrooms through techniques such as drying, cooling, packaging, irradiation, washing, and coating.
Collapse
Affiliation(s)
- Hafiz Umair Asdullah
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Feng Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | | | - Asad Abbas
- School of Science, Western Sydney University Hawkesbury, Sydney, NSW, Australia
| | - Shoukat Sajad
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Muhammad Rafiq
- Lushan Botanical Garden of Chinese Academy of Science, Jiujiang, China
| | | | - Arslan Tahir
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Dongliang Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Yougen Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| |
Collapse
|
3
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Guo Y, Chen X, Gong P, Long H, Wang J, Deng Z, Wang R, Han A, Qi Z, Yao W, Yang W, Wang J, Li N, Chen F. Characterization of an active film prepared with Lentinus edodes (shiitake) polysaccharide and its effect on post-harvest quality and storage of shiitake. Int J Biol Macromol 2023; 238:123973. [PMID: 36921827 DOI: 10.1016/j.ijbiomac.2023.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
The aim of this study was to prepare a film based on shiitake (Lentinus edodes) stalk polysaccharides (LEP) for mushroom preservation. The effects of different LEP concentrations on physical, mechanical, antioxidant, and antimicrobial properties of the prepared film were evaluated. Using scanning electron microscopy, it was revealed that the addition of 1.5 % LEP resulted in homogeneous distribution in the prepared film, as well as greatly improved its antimicrobial properties. Moreover, LEP film resulted in superior mushroom preservation by regulating enzyme activities related to mushroom browning and softening, thereby decaying these processes. In addition, the prepared film maintained mushroom quality by reducing the accumulation of H2O2 and activating the regulatory system against oxidative stress. Collectively, the findings of the present study highlight the potential benefits of LEP films as a strategy to improve mushroom quality and prevent post-harvest spoilage, hence constituting a novel prospect for the development of shiitake by-products.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Aoyang Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
5
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
6
|
Zhong Y, Dong S, Cui Y, Dong X, Xu H, Li M. Recent Advances in Postharvest Irradiation Preservation Technology of Edible Fungi: A Review. Foods 2022; 12:foods12010103. [PMID: 36613319 PMCID: PMC9818174 DOI: 10.3390/foods12010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Edible fungi have high edible, medicinal and economic value. Rapid development of the edible fungi industry can meet people's consumption demands. However, due to lack of suitable preservation technology after harvest, edible fungi are susceptible to mechanical damage, microbial infection, and discoloration, which could affect the quality and shelf life of fresh edible fungi. Many techniques have been developed to extend the postharvest storage time of fresh edible fungi and irradiation technology has been proven to be one of the potential technologies. This review summarizes the internal and external factors affecting the postharvest quality deterioration of edible fungi, introduces the types of irradiation preservation technology and describes comprehensive advances in the effects of irradiation on shelf life, microbiology, organoleptic qualities, nutritional qualities (proteins, fats, sugars and vitamins) and enzymatic activities of edible fungi from different regions and of different species worldwide. This review uncovers that the postharvest quality decay of edible fungi is a complex process. The irradiation preservation of edible fungi is affected not only by the edible fungus itself and the storage environment but also by the radiation type, radiation dose and radiation source conditions. Future studies need to consider the combined application of irradiation and other novel technologies to further improve the preservation effect of edible fungi, in particular in the area of irradiation's influence on the flavor of edible fungus.
Collapse
|
7
|
Guo Y, Chen X, Gong P, Guo J, Deng D, He G, Ji C, Wang R, Long H, Wang J, Yao W, Yang W, Chen F. Effect of shiitake mushrooms polysaccharide and chitosan coating on softening and browning of shiitake mushrooms (Lentinus edodes) during postharvest storage. Int J Biol Macromol 2022; 218:816-827. [PMID: 35907449 DOI: 10.1016/j.ijbiomac.2022.07.193] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023]
Abstract
We investigated the browning and softening of fresh Lentinula edodes (LE) coated with polysaccharides (LEP) isolated from LE stalks and stored at 4 °C for 15 days. The results showed that compared to the chitosan-coated and uncoated LE, the LEP-treated mushrooms showed significant improvements in several qualities during storage, such as reduced weight loss, retention of hardness and springiness, improved soluble protein content, and reduced browning, malondialdehyde content, and electrolyte leakage rate. The best results were obtained with 1.5 % LEP. LEP improved the activities of peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, and phenylalanine ammonialyase and significantly reduced the accumulation of hydrogen peroxide during storage compared to the control samples. In addition, the LEP treatment maintained the high antioxidant activity of LE during storage. Notably, LEP inhibited browning-related enzymes (polyphenol oxidase and tyrosinase) to reduce browning. It also maintained high levels of cellulase, chitinase, and β-1,3 glucanase to improve softening during storage. These findings suggest the potential of LEP to improve the post-harvest quality of mushrooms, allowing a storage period of up to 15 days (extending the shelf life by six days) and indirectly suggesting that the polysaccharide component of LEP can act as a self-defense additive to protect against spoilage during storage.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jing Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guanglian He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chenglong Ji
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
8
|
Li Y, Ding S, Kitazawa H, Wang Y. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|