1
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Yu D, Xing K, Wang N, Wang X, Zhang S, Du J, Zhang L. Effect of dynamic high-pressure microfluidization treatment on soybean protein isolate-rutin non-covalent complexes. Int J Biol Macromol 2024; 259:129217. [PMID: 38184043 DOI: 10.1016/j.ijbiomac.2024.129217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
In this investigation, soybean protein isolate-rutin (SPI-RT) complexes were treated using dynamic high-pressure microfluidization (DHPM). The effects of this process on the physicochemical and thermodynamic properties of SPI were investigated at different pressures. Fourier-transform infrared spectroscopy and fluorescence spectroscopy provided evidence that the SPI structure had been altered. The binding of SPI to RT resulted in a decrease in the percentage of α-helices and random curls as well as an increase in the percentage of β-sheets. In particular, the α-helix content decreased from 29.84 % to 26.46 %, the random curl content decreased from 17.45 % to 15.57 %, and the β-sheet content increased from 25.37 % to 26.53 %. Moreover, fluorescence intensity decreased, and the emission peak of the complex was red-shifted by 6 nm, exposing the internal groups. Based on fluorescence quenching analysis, optimal SPI-RT complexation was achieved after 120-MPa DHPM treatment, and molecular docking analysis verified the interaction between SPI and RT. The minimum particle size, maximum absolute potential, and total phenolic content of the complexes were 78.06 nm, 21.4 mV and 74.35 nmol/mg protein, respectively. Furthermore, laser confocal microscopy revealed that the complex particles had the best microstructure. Non-covalent interactions between the two were confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Moreover, the hydrophobicity of the complex particle's surface increased to 16,045 after 120-MPa DHPM treatment. The results of this study suggest that DHPM strongly promotes the improvement of the physicochemical properties of SPI, and provide a theoretical groundwork for further research.
Collapse
Affiliation(s)
- Dianyu Yu
- Northeast Agricultural University, Harbin 150030, China.
| | - Kaiwen Xing
- Northeast Agricultural University, Harbin 150030, China.
| | - Ning Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Xu Wang
- Northeast Agricultural University, Harbin 150030, China
| | | | - Jing Du
- Northeast Agricultural University, Harbin 150030, China.
| | - Lili Zhang
- Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Li J, Huang Y, Peng X, Luo W, Gantumur MA, Jiang Z, Hou J. Physical treatment synergized with natural surfactant for improving gas-water interfacial behavior and foam characteristics of α-lactalbumin. ULTRASONICS SONOCHEMISTRY 2023; 95:106369. [PMID: 36965313 PMCID: PMC10060377 DOI: 10.1016/j.ultsonch.2023.106369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/23/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate effect of physical treatment (ultrasound, U/high pressure homogenization, H/combined treatment, UH or HU) and surfactant (Mogroside V, Mog) on air/water interface adsorption and foaming properties of α-lactalbumin (ALa). Firstly, the binding of Mog and all physical-treated ALa was a static quenching process. Mog had the greatest binding affinity for HU-ALa among all treated samples. U or H treatment could change surface hydrophobicity of ALa/Mog complex. Secondly, at the molar ratio (ALa:Mog) of 1:50, foaming ability (FA) of all ALa samples got the maximum. The sequence of FA in ALa and ALa/Mog complex was listed as follow: HU > U > H > UH. Moreover, foaming stability (FS) of HU-ALa was the highest, followed by H-ALa, U-ALa and UH-ALa. Meanwhile, low concentration Mog increased FS of ALa or UH-ALa, but it reduced FS of H-ALa, U-ALa and HU-ALa. Quartz crystal microbalance with dissipation monitoring (QCM-D) experiment indicated that ALa/Mog complex after U or H treatment was quickly absorbed at air/water interface, compared with the treated ALa, and HU-ALa/Mog had the largest frequency shift. In addition, HU-ALa had the thickest bubble membrane and the highest dissipation shift in all samples, indicating that the absorbed membrane thickness and viscoelasticity of samples was correlated with foam stability. Therefore, U and H treatment synergism with Mog was an effective approach to enhance foam properties of ALa, which indicated that HU-treated ALa/Mog complex could be viewed as the safe and efficient foaming agent applied in food processing.
Collapse
Affiliation(s)
- Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuxuan Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinhui Peng
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenwen Luo
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Sahil, Madhumita M, Prabhakar PK, Kumar N. Dynamic high pressure treatments: current advances on mechanistic-cum-transport phenomena approaches and plant protein functionalization. Crit Rev Food Sci Nutr 2022; 64:2734-2759. [PMID: 36190514 DOI: 10.1080/10408398.2022.2125930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dynamic high pressure treatment (DHPT) either by high pressure homogenization or microfluidisation, is an emerging concept used in the food industry for new products development through macromolecules modifications in addition to simple mixing and emulsification action. Mechanistic understanding of droplets breakup during high pressure homogenization is used to understand how these compact and high molecular weight-sized globular plant proteins are affected during DHPTs. Plant protein needs to be functionalized for advanced use in food formulation. DHPTs brought changes in plant proteins' secondary, tertiary, and quaternary structures through alterations in intermolecular and intramolecular interactions, sulfhydryl groups, and disulfide bonds. These structural changes in plant proteins affected their functional and physicochemical properties like solubility, oil and water holding capacity, gelation, emulsification, foaming, and rheological properties. These remarkable changes made utilization of this concept in novel food system applications like in plant-based dairy analogues. Overall, this review provides a comprehensive and critical understanding of DHPTs on their mechanistic and transport approaches for droplet breakup, structural and functional modification of plant macromolecules. This article also explores the potential of DHPT for formulating plant-based dairy analogues to meet healthy and sustainable food consumption needs. HIGHLIGHTSIt critically reviews high pressure homogenization (HPH) and microfluidisation (DHPM).It explores the mechanistic and transport phenomena approaches of HPH and DHPMHPH and DHPM can induce conformational and structural changes in plant proteins.Improvement in the functional properties of HPH and DHPM treated plant proteins.HPH and DHPM are potentially applicable for plant based dairy alternatives food system.
Collapse
Affiliation(s)
- Sahil
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, HR, India
| | - Mitali Madhumita
- Department of Food Technology, School of Health Science and Technology, University of Petroleum and Energy Studies, Dehradun, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, HR, India
| | - Nitin Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonepat, HR, India
| |
Collapse
|