1
|
Oliulla H, Mizan MFR, Ashrafudoulla M, Meghla NS, Ha AJW, Park SH, Ha SD. The challenges and prospects of using cold plasma to prevent bacterial contamination and biofilm formation in the meat industry. Meat Sci 2024; 217:109596. [PMID: 39089085 DOI: 10.1016/j.meatsci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
The risk of foodborne disease outbreaks increases when the pathogenic bacteria are able to form biofilms, and this presents a major threat to public health. An emerging non-thermal cold plasma (CP) technology has proven a highly effective method for decontaminating meats and their products and extended their shelf life. CP treatments have ability to reduce microbial load and, biofilm formation with minimal change of color, pH value, and lipid oxidation of various meat and meat products. The CP technique offers many advantages over conventional processing techniques due to its layout flexibility, nonthermal behavior, affordability, and ecological sustainability. The technology is still in its infancy, and continuous research efforts are needed to realize its full potential in the meat industry. This review addresses the basic principles and the impact of CP technology on biofilm formation, meat quality (including microbiological, color, pH value, texture, and lipid oxidation), and microbial inactivation pathways and also the prospects of this technology.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Nigar Sultana Meghla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Grand Hyatt Hotel Jeju, 12 Noyeon Ro, Jeju, Jeju-Do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
2
|
Oliulla H, Mizan MFR, Kang I, Ha SD. On-going issues regarding biofilm formation in meat and meat products: challenges and future perspectives. Poult Sci 2024; 103:104373. [PMID: 39426218 PMCID: PMC11536009 DOI: 10.1016/j.psj.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
The meat industry has been significantly threatened by the risks of foodborne microorganisms and biofilm formation on fresh meat and processed products. A microbial biofilm is a sophisticated defensive mechanism that enables bacterial cells to survive in unfavorable environmental circumstances. Generally, foodborne pathogens form biofilms in various areas of meat-processing plants, and adequate sanitization of these areas is challenging owing to the high tolerance of biofilm cells to sanitization compared with their planktonic states. Consequently, preventing biofilm initiation and maturation using effective and powerful technologies is imperative. In this review, novel and advanced technologies that prevent bacterial and biofilm development via individual and combined intervention technologies, such as ultrasound, cold plasma, enzymes, bacteriocins, essential oils, and phages, were evaluated. The evidence regarding current technologies revealed in this paper is potentially beneficial to the meat industry in preventing bacterial contamination and biofilm formation in food products and processing equipment.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea.
| |
Collapse
|
3
|
Kitsiou M, Purk L, Ioannou C, Wantock T, Sandison G, Harle T, Gutierrez-Merino J, Klymenko OV, Velliou E. On the evaluation of the antimicrobial effect of grape seed extract and cold atmospheric plasma on the dynamics of Listeria monocytogenes in novel multiphase 3D viscoelastic models. Int J Food Microbiol 2023; 406:110395. [PMID: 37734280 DOI: 10.1016/j.ijfoodmicro.2023.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/30/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The demand for products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics have increased over the last years. Novel non-thermal technologies such as cold atmospheric plasma (CAP) and natural antimicrobials such as grape seed extract (GSE) are attractive alternatives to conventional food decontamination methods as they can meet the above demands. The aim of this study was to investigate the microbial inactivation potential of GSE, CAP (in this case, a remote air plasma with an ozone-dominated RONS output) and their combination against L. monocytogenes on five different 3D in vitro models of varying rheological, structural, and biochemical composition. More specifically, we studied the microbial dynamics, as affected by 1 % (w/v) GSE, CAP or their combination, in three monophasic Xanthan Gum (XG) based 3D models of relatively low viscosity (1.5 %, 2.5 % and 5 % w/v XG) and in a biphasic XG/Whey Protein (WPI) and a triphasic XG/WPI/fat model. A significant microbial inactivation (comparable to liquid broth) was achieved in presence of GSE on the surface of all monophasic models regardless of their viscosity. In contrast, the GSE antimicrobial effect was diminished in the multiphasic systems, resulting to only a slight disturbance of the microbial growth. In contrast, CAP showed better antimicrobial potential on the surface of the complex multiphasic models as compared to the monophasic models. When combined, in a hurdle approach, GSE/CAP showed promising microbial inactivation potential in all our 3D models, but less microbial inactivation in the structurally and biochemically complex multiphasic models, with respect to the monophasic models. The level of inactivation also depended on the duration of the exposure to GSE. Our results contribute towards understanding the antimicrobial efficacy of GSE, CAP and their combination as affected by robustly controlled changes of rheological and structural properties and of the biochemical composition of the environment in which bacteria grow. Therefore, our results contribute to the development of sustainable food safety strategies.
Collapse
Affiliation(s)
- Melina Kitsiou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK
| | - Lisa Purk
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK
| | - Christina Ioannou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere, GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere, GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere, GU27 3HA, UK
| | | | - Oleksiy V Klymenko
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini Velliou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK.
| |
Collapse
|
4
|
Jayasena DD, Kang T, Wijayasekara KN, Jo C. Innovative Application of Cold Plasma Technology in Meat and Its Products. Food Sci Anim Resour 2023; 43:1087-1110. [PMID: 37969327 PMCID: PMC10636222 DOI: 10.5851/kosfa.2023.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 11/17/2023] Open
Abstract
The growing demand for sustainable food production and the rising consumer preference for fresh, healthy, and safe food products have been driving the need for innovative methods for processing and preserving food. In the meat industry, this demand has led to the development of new interventions aimed at extending the shelf life of meats and its products while maintaining their quality and nutritional value. Cold plasma has recently emerged as a subject of great interest in the meat industry due to its potential to enhance the microbiological safety of meat and its products. This review discusses the latest research on the possible application of cold plasma in the meat processing industry, considering its effects on various quality attributes and its potential for meat preservation and enhancement. In this regard, many studies have reported substantial antimicrobial efficacy of cold plasma technology in beef, pork, lamb and chicken, and their products with negligible changes in their physicochemical attributes. Further, the application of cold plasma in meat processing has shown promising results as a potential novel curing agent for cured meat products. Understanding the mechanisms of action and the interactions between cold plasma and food ingredients is crucial for further exploring the potential of this technology in the meat industry, ultimately leading to the development of safe and high-quality meat products using cold plasma technology.
Collapse
Affiliation(s)
- Dinesh D. Jayasena
- Department of Animal Science, Faculty of
Animal Science and Export Agriculture, Uva Wellassa
University, Badulla 90000, Sri Lanka
| | - Taemin Kang
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Kaushalya N. Wijayasekara
- Department of Animal Science, Faculty of
Animal Science and Export Agriculture, Uva Wellassa
University, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
- Institute of Green Bio Science and
Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
5
|
Kaur R, Kaur L, Gupta TB, Singh J, Bronlund J. Multitarget preservation technologies for chemical-free sustainable meat processing. J Food Sci 2022; 87:4312-4328. [PMID: 36120824 PMCID: PMC9825855 DOI: 10.1111/1750-3841.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
Due to the growing consumer demand for safe and naturally processed meats, the meat industry is seeking novel methods to produce safe-to-consume meat products without affecting their sensory appeal. The green technologies can maintain the sensory and nutritive characteristics and ensure the microbial safety of processed meats and, therefore, can help to reduce the use of chemical preservatives in meat products. The use of chemical additives, especially nitrites in processed meat products, has become controversial because they may form carcinogenic N-nitrosamines, a few of which are suspected as cancer precursors. Thus, the objective of reducing or eliminating nitrite is of great interest to meat researchers and industries. This review, for the first time, discusses the influence of processing technologies such as microwave, irradiation, high-pressure thermal processing (HPTP) and multitarget preservation technology on the quality characteristics of processed meats, with a focus on their sensory quality. These emerging technologies can help in the alleviation of ingoing nitrite or formed nitrosamine contents in meat products. The multitarget preservation technology is an innovative way to enhance the shelf life of meat products through the combined use of different technologies/natural additives. The challenges and opportunities associated with the use of these technologies for processing meat are also reviewed.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Lovedeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Jaspreet Singh
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - John Bronlund
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
6
|
Zhang Y, Lei Y, Huang S, Dong X, Huang J, Huang M. In-package cold plasma treatment of braised chicken: voltage effect. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Recent Advances in Cold Plasma Technology for Food Processing. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Jadhav HB, Annapure U. Consequences of non-thermal cold plasma treatment on meat and dairy lipids – A review. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
9
|
Preharvest Management and Postharvest Intervention Strategies to Reduce Escherichia coli Contamination in Goat Meat: A Review. Animals (Basel) 2021; 11:ani11102943. [PMID: 34679964 PMCID: PMC8532625 DOI: 10.3390/ani11102943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Goat farms and processing facilities worldwide are primarily small-scale, limited resource operations. Cost-effectiveness and practicality are critical factors to be considered before adopting any pre- and/or post-harvest strategies for pathogen reduction in goat meat. Preharvest management methods in goats that can reduce Escherichia coli in meat include minimizing animal stress, selecting diets and feed deprivation times that can reduce fecal shedding of bacteria, and adding tannin-rich feed supplements. In addition, use of appropriate postharvest nonthermal intervention technologies that can reduce microbial loads in carcasses and meat can extend the shelf-life and marketability of goat meat products. Reducing stress prior to slaughter and using nonthermal intervention methods can result in better meat quality and economic returns for producers. Abstract Goat meat is the main source of animal protein in developing countries, particularly in Asia and Africa. Goat meat consumption has also increased in the US in the recent years due to the growing ethnic population. The digestive tract of goat is a natural habitat for Escherichia coli organisms. While researchers have long focused on postharvest intervention strategies to control E. coli outbreaks, recent works have also included preharvest methodologies. In goats, these include minimizing animal stress, manipulating diet a few weeks prior to processing, feeding diets high in tannins, controlling feed deprivation times while preparing for processing, and spray washing goats prior to slaughter. Postharvest intervention methods studied in small ruminant meats have included spray washing using water, organic acids, ozonated water, and electrolyzed water, and the use of ultraviolet (UV) light, pulsed UV-light, sonication, low-voltage electricity, organic oils, and hurdle technologies. These intervention methods show a strong antimicrobial activity and are considered environmentally friendly. However, cost-effectiveness, ease of application, and possible negative effects on meat quality characteristics must be carefully considered before adopting any intervention strategy for a given meat processing operation. As discussed in this review paper, novel pre- and post-harvest intervention methods show significant potential for future applications in goat farms and processing plants.
Collapse
|
10
|
González-González CR, Labo-Popoola O, Delgado-Pando G, Theodoridou K, Doran O, Stratakos AC. The effect of cold atmospheric plasma and linalool nanoemulsions against Escherichia coli O157:H7 and Salmonella on ready-to-eat chicken meat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Xiao Z, Fan Z, Niu Y, Kou X. Construction of hollow proanthocyanidin cages as a novel delivery system using zeolitic imidazolate framework-8 sacrificial templates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Xiao Z, Bao H, Jia S, Bao Y, Niu Y, Kou X. Organic Hollow Mesoporous Silica as a Promising Sandalwood Essential Oil Carrier. Molecules 2021; 26:2744. [PMID: 34067007 PMCID: PMC8125090 DOI: 10.3390/molecules26092744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/04/2022] Open
Abstract
As film-forming agents, fillers and adsorbents, microplastics are often added to daily personal care products. Because of their chemical stability, they remain in the environment for thousands of years, endangering the safety of the environment and human health. Therefore, it is urgent to find an environmentally friendly substitute for microplastics. Using n-octyltrimethoxysilane (OTMS) and tetraethoxysilane (TEOS) as silicon sources, a novel, environmentally friendly, organic hollow mesoporous silica system is designed with a high loading capacity and excellent adsorption characteristics in this work. In our methodology, sandalwood essential oil (SEO) was successfully loaded into the nanoparticle cavities, and was involved in the formation of Pickering emulsion as well, with a content of up to 40% (w/w). The developed system was a stable carrier for the dispersion of SEO in water. This system can not only overcome the shortcomings of poor water solubility and volatility of sandalwood essential oil, but also act as a microplastic substitute with broad prospects in the cosmetics and personal care industry, laying a foundation for the preparation and applications of high loading capacity microcapsules in aqueous media.
Collapse
Affiliation(s)
| | | | | | | | | | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Z.X.); (H.B.); (S.J.); (Y.B.); (Y.N.)
| |
Collapse
|
13
|
Abstract
Abstract
Purpose of Review
The market for minimally processed products is constantly growing due to consumer demand. Besides food safety and increased shelf life, nutritional value and sensory appearance also play a major role and have to be considered by the food processors. Therefore, the purpose of the review was to summarize recent knowledge about important alternative non-thermal physical technologies, including both those which are actually applied (e.g. high-pressure processing and irradiation) and those demonstrating a high potential for future application in raw meat decontamination (e.g. pulsed light UV-C and cold plasma treatment). The evaluation of the methods is carried out with respect to efficiency, preservation of food quality and consumer acceptance.
Recent Findings
It was evident that significantly higher bacterial reductions are achieved with gamma-ray, electron beam irradiation and high pressure, followed by pulsed light, UV-C and cold plasma, with ultrasound alone proving the least effective. As a limitation, it must be noted that sensory deviations may occur and that legal approvals may have to be applied for.
Summary
In summary, it can be concluded that physical methods have the potential to be used for decontamination of meat surfaces in addition to common hygiene measures. However, the aim of future research should be more focused on the combined use of different technologies to further increase the inactivation effects by keeping meat quality at the same time.
Collapse
|
14
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment. SUSTAINABILITY 2020. [DOI: 10.3390/su12155948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A dual objective of food storage is to retain nutritional value and safe consumption over time. As supply chains have globalized, food protection and preservation methods have advanced. However, increasing demands to cater for larger volumes and for more effective food storage call for new technologies. This paper examines promising meat preservation methods, including high pressure process, ultrasounds, pulsating electric and magnetic field, pulsed light and cold plasma. These methods not only make it possible to obtain meat and meat products with a longer shelf life, safer for health and without preservatives, but also are more environment-friendly in comparison with traditional methods. With the use of alternative methods, it is possible to obtain meat products that are microbiologically safer, whilst also high quality and free from chemical additives. Moreover, these new technologies are also more ecological, do not require large quantities of energy or water, and generate less waste.
Collapse
|
16
|
Liao X, Cullen PJ, Muhammad AI, Jiang Z, Ye X, Liu D, Ding T. Cold Plasma–Based Hurdle Interventions: New Strategies for Improving Food Safety. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09222-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
|
18
|
Pan Y, Cheng JH, Sun DW. Cold Plasma-Mediated Treatments for Shelf Life Extension of Fresh Produce: A Review of Recent Research Developments. Compr Rev Food Sci Food Saf 2019; 18:1312-1326. [PMID: 33336905 DOI: 10.1111/1541-4337.12474] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
Abstract
Fresh produce, like fruits and vegetables, are important sources of nutrients and health-promoting compounds. However, incidences of foodborne outbreaks associated with fresh produce often occur; it is thus important to develop and expand decay-control technologies that can not only maintain the quality but can also control the biological hazards in postharvest, processing, and storage to extend their shelf life. It is under such a situation that plasma-mediated treatments have been developed as a novel nonthermal processing tool, offering many advantages and attracting much interest from researchers and the food industry. This review summarizes recent developments of cold plasma technology and associated activated water for shelf life extension of fresh produce. An overview of plasma generation and its physical-chemical properties as well as methods for improving plasma efficiency are first presented. Details of using the technology as a nonthermal agent in inhibiting spoilage and pathogenic microorganisms, inactivating enzymes, and modifying the barrier properties or imparting specific functionalities of packaging materials to extend shelf life of food produce are then reviewed, and the effects of cold plasma-mediated treatment on microstructure and quality attributes of fresh produce are discussed. Future prospects and research gaps of cold plasma are finally elucidated. The review shows that atmospheric plasma-mediated treatments in various gas mixtures can significantly inhibit microorganisms, inactive enzyme, and modify packaging materials, leading to shelf life extension of fresh produce. The quality attributes of treated produce are not compromised but improved. Therefore, plasma-mediated treatment has great potential and values for its application in the food industry.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Degala HL, Mahapatra AK, Demirci A, Kannan G. Evaluation of non-thermal hurdle technology for ultraviolet-light to inactivate Escherichia coli K12 on goat meat surfaces. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
|
21
|
Lin L, Zhu Y, Li C, Liu L, Surendhiran D, Cui H. Antibacterial activity of PEO nanofibers incorporating polysaccharide from dandelion and its derivative. Carbohydr Polym 2018; 198:225-232. [PMID: 30092994 DOI: 10.1016/j.carbpol.2018.06.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 02/02/2023]
Abstract
A water-soluble antibacterial polysaccharide from dandelions (PD) was chemically modified to obtain its carboxymethylated derivative (CPD). The degree of substitution of CPD was 0.455. Fourier transform infrared (FTIR) spectra analysis, zeta potential, particle size and rheological test verified the carboxymethylation of PD, accompanying with the change of physicochemical properties. Moreover, Listeria monocytogenes treated with 10 mg/mL PD and CPD achieved 1.96 and 3.29 log CFU/mL reduction in population, respectively. Subsequently, PD and CPD were incorporated into polyethylene oxide (PEO) nanofiber matrix to fabricate antimicrobial nanofibers. The prepared nanofibers were characterized by scanning electron microscope, atomic force microscope and FTIR. Finally, both PD/PEO and CPD/PEO nanofibers exhibited favourable antibacterial effect on L. monocytogenes, with an improved antibacterial activity of CPD/PEO nanofibers than PD/PEO nanofibers. In conclusion, this study demonstrated PD and CPD could be applied to the fabrication of antibacterial food packaging.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yulin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- Department of Bioresource, Hunan Academy of Forestry, Changsha 410007, China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | | | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Chizoba Ekezie FG, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|