1
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z, Wu Y, Chu S. Overview of strategies to improve the antibacterial property of dental implants. Front Bioeng Biotechnol 2023; 11:1267128. [PMID: 37829564 PMCID: PMC10565119 DOI: 10.3389/fbioe.2023.1267128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing number of peri-implant diseases and the unsatisfactory results of conventional treatment are causing great concern to patients and medical staff. The effective removal of plaque which is one of the key causes of peri-implant disease from the surface of implants has become one of the main problems to be solved urgently in the field of peri-implant disease prevention and treatment. In recent years, with the advancement of materials science and pharmacology, a lot of research has been conducted to enhance the implant antimicrobial properties, including the addition of antimicrobial coatings on the implant surface, the adjustment of implant surface topography, and the development of new implant materials, and significant progress has been made in various aspects. Antimicrobial materials have shown promising applications in the prevention of peri-implant diseases, but meanwhile, there are some shortcomings, which leads to the lack of clinical widespread use of antimicrobial materials. This paper summarizes the research on antimicrobial materials applied to implants in recent years and presents an outlook on the future development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shunli Chu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Surface Modification of Titanium by Femtosecond Laser in Reducing Bacterial Colonization. COATINGS 2022. [DOI: 10.3390/coatings12030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the past few decades, titanium and its alloys have been widely used in the orthopaedic field. However, because titanium is bioinert and lacks antibacterial properties, infection may happen when bacteria attach to implant surfaces and form biofilms. It has been studied that some naturally existing micron-scale topographies can reduce bacterial attachment such as cicada wings and gecko skins. The aim of this in vitro study was to find an implant with good biocompatibility and antimicrobial properties by the modification of micron-scale topographies. In this paper, a femtosecond laser was used to provide microtopography coatings on Ti substrates. The surface morphology of Ti substrates was observed by scanning electron microscopy (SEM). XPS was used to fulfil the chemical compositional analysis. The surface wettability was measured by contact angle measurement system. The effect of microtopography coatings with different surface microstructures on bacterial activities and bone marrow mesenchymal stem cells (BMSC) functions was investigated. The results of in vitro study revealed that microtopography coatings restrain the adhesion of Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), which are common pathogens of orthopaedic implant infections. In addition, microtopography coatings stimulated BMSC adhesion and proliferation. Our studies suggest that a microtopography-coated sample modified by femtosecond laser showed promising antibacterial properties and favourable biocompatibility. The femtosecond laser technique provides an accurate and valid way to produce microtopography coatings with outstanding biocompatibility and antimicrobial properties, and could be widely used to modify the surface of orthopaedic metal implants with great potential.
Collapse
|
4
|
Kim KH, Hwang A, Song Y, Lee WS, Moon J, Jeong J, Bae NH, Jung YM, Jung J, Ryu S, Lee SJ, Choi BG, Kang T, Lee KG. 3D Hierarchical Nanotopography for On-Site Rapid Capture and Sensitive Detection of Infectious Microbial Pathogens. ACS NANO 2021; 15:4777-4788. [PMID: 33502164 DOI: 10.1021/acsnano.0c09411] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Effective capture and rapid detection of pathogenic bacteria causing pandemic/epidemic diseases is an important task for global surveillance and prevention of human health threats. Here, we present an advanced approach for the on-site capture and detection of pathogenic bacteria through the combination of hierarchical nanostructures and a nuclease-responsive DNA probe. The specially designed hierarchical nanocilia and network structures on the pillar arrays, termed 3D bacterial capturing nanotopographical trap, exhibit excellent mechanical reliability and rapid (<30 s) and irreversible bacterial capturability. Moreover, the nuclease-responsive DNA probe enables the highly sensitive and extremely fast (<1 min) detection of bacteria. The bacterial capturing nanotopographical trap (b-CNT) facilitates the on-site capture and detection of notorious infectious pathogens (Escherichia coli O157:H7, Salmonella enteritidis, Staphylococcus aureus, and Bacillus cereus) from kitchen tools and food samples. Accordingly, the usefulness of the b-CNT is confirmed as a simple, fast, sensitive, portable, and robust on-site capture and detection tool for point-of-care testing.
Collapse
Affiliation(s)
- Kyung Hoon Kim
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Younseong Song
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Nam Ho Bae
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiyoung Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Evans A, Slate AJ, Akhidime ID, Verran J, Kelly PJ, Whitehead KA. The Removal of Meat Exudate and Escherichia coli from Stainless Steel and Titanium Surfaces with Irregular and Regular Linear Topographies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063198. [PMID: 33808807 PMCID: PMC8003725 DOI: 10.3390/ijerph18063198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023]
Abstract
Bacterial retention and organic fouling on meat preparation surfaces can be influenced by several factors. Surfaces with linear topographies and defined chemistries were used to determine how the orientation of the surface features affected cleaning efficacy. Fine polished (irregular linear) stainless steel (FPSS), titanium coated fine polished (irregular linear) stainless steel (TiFP), and topographically regular, linear titanium coated surfaces (RG) were fouled with Escherichia coli mixed with a meat exudate (which was utilised as a conditioning film). Surfaces were cleaned along or perpendicular to the linear features for one, five, or ten wipes. The bacteria were most easily removed from the titanium coated and regular featured surfaces. The direction of cleaning (along or perpendicular to the surface features) did not influence the amount of bacteria retained, but meat extract was more easily removed from the surfaces when cleaned in the direction along the linear surface features. Following ten cleans, there was no significant difference in the amount of cells or meat exudate retained on the surfaces cleaned in either direction. This study demonstrated that for the E. coli cells, the TiFP and RG surfaces were easiest to clean. However, the direction of the clean was important for the removal of the meat exudate from the surfaces.
Collapse
Affiliation(s)
- Adele Evans
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.E.); (I.D.A.); (J.V.); (P.J.K.)
| | - Anthony J. Slate
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - I. Devine Akhidime
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.E.); (I.D.A.); (J.V.); (P.J.K.)
- Microbiology at Interfaces, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Joanna Verran
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.E.); (I.D.A.); (J.V.); (P.J.K.)
| | - Peter J. Kelly
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.E.); (I.D.A.); (J.V.); (P.J.K.)
| | - Kathryn A. Whitehead
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.E.); (I.D.A.); (J.V.); (P.J.K.)
- Microbiology at Interfaces, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
- Correspondence:
| |
Collapse
|
6
|
Molecular dynamics model for the antibactericity of textured surfaces. Colloids Surf B Biointerfaces 2021; 199:111504. [PMID: 33418209 DOI: 10.1016/j.colsurfb.2020.111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
An original model has been developed for the initial stage of bacterial adhesion on textured surfaces. Based on molecular dynamics, the model describes contact between individual bacterial cells in a planktonic state and a surface, accounting for both the mechanical properties of the cells and the physico-chemical mechanisms governing interaction with the substrate. Feasibility of the model is assessed via comparison with experimental results of bacterial growth on stainless steel substrates textured with ultrashort laser pulses. Simulations are performed for two different bacterial species, Staphylococcus aureus and Escherichia coli, on two distinct surface types characterised by elongated ripples and isolated nanopillars, respectively. Calculated results are in agreement with experiment outcomes and highlight the role of mechanical stresses within the cell wall due to deformation upon interaction with the substrate, creating unfavourable conditions for bacteria during the initial phases of adhesion. Furthermore, the flexibility of the model provides insight into the intricate interplay between topography and the physico-chemical properties of the substrate, pointing to a unified picture of the mechanisms underlying bacterial affinity to a textured surface.
Collapse
|
7
|
Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 2020; 268:120595. [PMID: 33360301 DOI: 10.1016/j.biomaterials.2020.120595] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Microbes have remarkable capabilities to attach to the surface of implanted medical devices and form biofilms that adversely impact device function and increase the risk of multidrug-resistant infections. The physicochemical properties of biomaterials have long been known to play an important role in biofilm formation. More recently, a series of discoveries in the natural world have stimulated great interest in the use of 3D surface topography to engineer antifouling materials that resist bacterial colonization. There is also increasing evidence that some medical device surface topographies, such as those designed for tissue integration, may unintentionally promote microbial attachment. Despite a number of reviews on surface topography and biofilm control, there is a missing link between how bacteria sense and respond to 3D surface topographies and the rational design of antifouling materials. Motivated by this gap, we present a review of how bacteria interact with surface topographies, and what can be learned from current laboratory studies of microbial adhesion and biofilm formation on specific topographic features and medical devices. We also address specific biocompatibility considerations and discuss how to improve the assessment of the anti-biofilm performance of topographic surfaces. We conclude that 3D surface topography, whether intended or unintended, is an important consideration in the rational design of safe medical devices. Future research on next-generation smart antifouling materials could benefit from a greater focus on translation to real-world applications.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - K Scott Phillips
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, Silver Spring, MD, 20993, United States.
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - Mehdi Kazemzadeh-Narbat
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Product Evaluation and Quality, Office of Health Technology 6, Silver Spring, MD, 20993, United States; Musculoskeletal Clinical Regulatory Advisers (MCRA), Washington DC, 20001, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, United States; Department of Biology, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|