1
|
Coetzer WG. Using grass inflorescence as source material for biomonitoring through environmental DNA metabarcoding. Mol Biol Rep 2024; 51:987. [PMID: 39283359 PMCID: PMC11405429 DOI: 10.1007/s11033-024-09885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Over the last decade, increasing attention has been directed to using different substrates as sources of environmental DNA (eDNA) in ecological research. Reports on the use of environmental DNA located on the surface of plant leaves and flowers have highlighted the utility of this DNA source in studies including, but not limited to, biodiversity, invasive species, and pollination ecology. The current study assesses grass inflorescence as a source of eDNA for detecting invertebrate taxa. METHODS AND RESULTS Inflorescences from four common grass species in a central South African grassland were collected for high-throughput sequencing analysis. Universal COI primers were utilised to detect Metazoan diversity. The sequencing results allowed for the detection of three Arthropoda orders, with most OTUs assigned to fungal taxa (Ascomycota and Basidiomycota). Some biases were detected while observing the relative read abundance (RRA) results. DISCUSSION The observed biases could be explained by the accidental inclusion of invertebrate specimens during sample collection and DNA extraction. Primer biases towards the amplified taxa could be another reason for the observed RRA results. This study provided insight into the invertebrate community associated with the four sampled grass species. It should be noted that with the lack of negative field controls, it is impossible to rule out the influence of airborne eDNA on the observed diversity associated with each grass species. The lack of the inclusion of PCR and extraction blanks in the sequencing step, as well as the inclusion of negative field controls, including other areas for refinement were highlighted, and suggestions were provided to improve the outcomes of future studies.
Collapse
Affiliation(s)
- Willem G Coetzer
- Department of Zoology and Entomology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
- Department of Genetics, University of the Free State, Bloemfontein, Free State, South Africa.
| |
Collapse
|
2
|
Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins (Basel) 2023; 15:577. [PMID: 37756003 PMCID: PMC10534665 DOI: 10.3390/toxins15090577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
3
|
Laut S, Poapolathep S, Piasai O, Sommai S, Boonyuen N, Giorgi M, Zhang Z, Fink-Gremmels J, Poapolathep A. Storage Fungi and Mycotoxins Associated with Rice Samples Commercialized in Thailand. Foods 2023; 12:487. [PMID: 36766016 PMCID: PMC9914209 DOI: 10.3390/foods12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The study focused on the examination of the different fungal species isolated from commercial rice samples, applying conventional culture techniques, as well as different molecular and phylogenic analyses to confirm phenotypic identification. Additionally, the mycotoxin production and contamination were analyzed using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 40 rice samples were obtained covering rice berry, red jasmine rice, brown rice, germinated brown rice, and white rice. The blotting paper technique applied on the 5 different types of rice samples detected 4285 seed-borne fungal infections (26.8%) for 16,000 rice grains. Gross morphological data revealed that 19 fungal isolates belonged to the genera Penicillium/Talaromyces (18 of 90 isolates; 20%) and Aspergillus (72 of 90 isolates; 80%). To check their morphologies, molecular data (fungal sequence-based BLAST results and a phylogenetic tree of the combined ITS, BenA, CaM, and RPB2 datasets) confirmed the initial classification. The phylogenic analysis revealed that eight isolates belonged to P. citrinum and, additionally, one isolate each belonged to P. chermesinum, A. niger, A. fumigatus, and A. tubingensis. Furthermore, four isolates of T. pinophilus and one isolate of each taxon were identified as Talaromyces (T. radicus, T. purpureogenum, and T. islandicus). The results showed that A. niger and T. pinophilus were two commonly occurring fungal species in rice samples. After subculturing, ochratoxin A (OTA), generated by T. pinophilus code W3-04, was discovered using LC-MS/MS. In addition, the Fusarium toxin beauvericin was detected in one of the samples. Aflatoxin B1 or other mycotoxins, such as citrinin, trichothecenes, and fumonisins, were detected. These preliminary findings should provide valuable guidance for hazard analysis critical control point concepts used by commercial food suppliers, including the analysis of multiple mycotoxins. Based on the current findings, mycotoxin analyses should focus on A. niger toxins, including OTA and metabolites of T. pinophilus (recently considered a producer of emerging mycotoxins) to exclude health hazards related to the traditionally high consumption of rice by Thai people.
Collapse
Affiliation(s)
- Seavchou Laut
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Onuma Piasai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sujinda Sommai
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Galvan D, Effting L, Torres Neto L, Conte-Junior CA. An overview of research of essential oils by self-organizing maps: A novel approach for meta-analysis study. Compr Rev Food Sci Food Saf 2021; 20:3136-3163. [PMID: 34125485 DOI: 10.1111/1541-4337.12773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/13/2021] [Accepted: 04/24/2021] [Indexed: 12/17/2022]
Abstract
Essential oils (EOs) are commercially important products, sources of compounds with antioxidant and antimicrobial activities considered indispensable for several fields, such as the food industry, cosmetics, perfumes, pharmaceuticals, sanitary and agricultural industries. In this context, this systematic review and meta-analysis, a novel approach will be presented using chemometric tools to verify and recognize patterns of antioxidant, antibacterial, and antifungal activities of EOs according to their geographic, botanical, chemical, and microbiological distribution. Scientific papers were selected following the Preferred Reporting Items for Systematic Review and Meta-Analyses statement flow diagram, and the data were evaluated by the self-organizing map and hierarchical cluster analysis. Overall, this novel approach allowed us to draw an overview of antioxidants and antimicrobials activities of EOs reported in 2019, through 585 articles evaluated, obtaining a dataset with more than 10,000 data, distributed in more than 80 countries, 290 plant genera, 150 chemical compounds, 30 genera of bacteria, and 10 genera of fungi. The networks for geographic, botanical, chemical, and microbiological distribution indicated that Brazil, Asia, the botanical genus Thymus, species Thymus vulgaris L. "thyme," the Lamiaceae family, limonene, and the oxygenated monoterpene class were the most representative in the dataset, while the species Escherichia coli and Candida albicans were the most used to assess the antimicrobial activity of EOs. This work can be seen as a guide for the processing of metadata using a novel approach with non-conventional statistical methods. However, this preliminary approach with EOs can be extended to other sources or areas of food science.
Collapse
Affiliation(s)
- Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Luiz Torres Neto
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Olagunju O, Ijabadeniyi O. Behaviour of Aspergillus flavus in Bambara groundnut (Vigna subterranea (L.) Verdc) as affected by milling, fermentation or roasting during storage. Int J Food Microbiol 2020; 337:108940. [PMID: 33232888 DOI: 10.1016/j.ijfoodmicro.2020.108940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 11/15/2022]
Abstract
Fungal contamination and mycotoxin accumulation in agricultural products are influenced markedly by processing and storage conditions. This study aimed at determining the growth of Aspergillus flavus and aflatoxin production in Bambara groundnut flour processed by milling, lactic acid bacteria (Lactobacillus plantarum) fermentation or roasting at 140 °C for 20 min and stored for up to 10 weeks at 25 ± 2 °C and 75 ± 2% relative humidity. It also studied the behaviour of A. flavus in maize-bambara composite flour. Processed and irradiated flour samples were inoculated with 2 × 107 spores/ml of A. flavus and stored. Samples were withdrawn weekly and analyzed for viable populations of A. flavus, concentrations of AFB1, AFB2, AFG1 and AFG2 using HPLC-Fluorescence detection method, and changes in water activity values. The population of A. flavus significantly (p ≤ 0.05) decreased in roasted Bambara groundnut flour from 7.18 to 2.00 Log10 CFU/g over the storage period, and in fermented Bambara groundnut flour from 6.72 to 2.67 Log10 CFU/g after 7 weeks of storage and beyond was not detected. Significant (p ≤ 0.05) decrease in the concentration of AFB1 from 0.36 to 0.26 μg/kg and AFG1 from 0.15 to 0.07 μg/kg was also recorded in roasted Bambara groundnut flour over the storage period. Conversely, AFB1 concentration in the composite flour significantly (p ≤ 0.05) increased from 1.17 to 2.05 μg/kg over the storage period. Lactic acid bacteria fermentation, roasting and compositing markedly influenced the growth of A. flavus and aflatoxin production in Bambara groundnut and maize flours during storage.
Collapse
Affiliation(s)
- Omotola Olagunju
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa.
| | - Oluwatosin Ijabadeniyi
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
7
|
Otto M, Pretorius B, Kritzinger Q, Schönfeldt H. Contamination of freshly harvested Bambara groundnut (
Vigna subterranea
) seed from Mpumalanga, South Africa, with mycotoxigenic fungi. J Food Saf 2020. [DOI: 10.1111/jfs.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margot Otto
- Department of Animal and Wildlife Science, Institute of Food Nutrition and Well‐Being University of Pretoria Pretoria South Africa
| | - Beulah Pretorius
- Department of Animal and Wildlife Science, Institute of Food Nutrition and Well‐Being University of Pretoria Pretoria South Africa
| | - Quenton Kritzinger
- Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
| | - Hettie Schönfeldt
- Department of Animal and Wildlife Science, Institute of Food Nutrition and Well‐Being University of Pretoria Pretoria South Africa
| |
Collapse
|
8
|
Olagunju O, Mchunu N, Durand N, Alter P, Montet D, Ijabadeniyi O. Effect of milling, fermentation or roasting on water activity, fungal growth, and aflatoxin contamination of Bambara groundnut (Vigna subterranea (L.) Verdc). Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|