1
|
Ansari F, Lee CC, Rashidimehr A, Eskandari S, Ashaolu TJ, Mirzakhani E, Pourjafar H, Jafari SM. The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins. Curr Pharm Biotechnol 2024; 25:962-980. [PMID: 37264621 DOI: 10.2174/1389201024666230601141627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host's health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Department of Agricultural Research, Razi Vaccine and Serum Research Institute, Education and Extension Organization (AREEO), Tehran. Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Chi-Ching Lee
- Department of Food Engineering, Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Turkey
| | - Azadeh Rashidimehr
- Department of Food Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Lorestan, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME), Tehran, Iran
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Wang Y, Jiang L, Zhang Y, Ran R, Meng X, Liu S. Research advances in the degradation of aflatoxin by lactic acid bacteria. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230029. [PMID: 37901116 PMCID: PMC10601132 DOI: 10.1590/1678-9199-jvatitd-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Ran
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shukun Liu
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Zhang J, Tang X, Cai Y, Zhou WW. Mycotoxin Contamination Status of Cereals in China and Potential Microbial Decontamination Methods. Metabolites 2023; 13:metabo13040551. [PMID: 37110209 PMCID: PMC10143121 DOI: 10.3390/metabo13040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The presence of mycotoxins in cereals can pose a significant health risk to animals and humans. China is one of the countries that is facing cereal contamination by mycotoxins. Treating mycotoxin-contaminated cereals with established physical and chemical methods can lead to negative effects, such as the loss of nutrients, chemical residues, and high energy consumption. Therefore, microbial detoxification techniques are being considered for reducing and treating mycotoxins in cereals. This paper reviews the contamination of aflatoxins, zearalenone, deoxynivalenol, fumonisins, and ochratoxin A in major cereals (rice, wheat, and maize). Our discussion is based on 8700 samples from 30 provincial areas in China between 2005 and 2021. Previous research suggests that the temperature and humidity in the highly contaminated Chinese cereal-growing regions match the growth conditions of potential antagonists. Therefore, this review takes biological detoxification as the starting point and summarizes the methods of microbial detoxification, microbial active substance detoxification, and other microbial inhibition methods for treating contaminated cereals. Furthermore, their respective mechanisms are systematically analyzed, and a series of strategies for combining the above methods with the treatment of contaminated cereals in China are proposed. It is hoped that this review will provide a reference for subsequent solutions to cereal contamination problems and for the development of safer and more efficient methods of biological detoxification.
Collapse
Affiliation(s)
- Jing Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yifan Cai
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Joutsjoki VV, Korhonen HJ. Management strategies for aflatoxin risk mitigation in maize, dairy feeds and milk value chains—case study Kenya. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Widespread aflatoxin contamination of a great number of food and feed crops has important implications on global trade and health. Frequent occurrence of aflatoxin in maize and milk poses serious health risks to consumers because these commodities are staple foods in many African countries. This situation calls for development and implementation of rigorous aflatoxin control measures that encompass all value chains, focusing on farms where food and feed-based commodities prone to aflatoxin contamination are cultivated. Good agricultural practices (GAP) have proven to be an effective technology in mitigation and management of the aflatoxin risk under farm conditions. The prevailing global climate change is shown to increase aflatoxin risk in tropical and subtropical regions. Thus, there is an urgent need to devise and apply novel methods to complement GAP and mitigate aflatoxin contamination in the feed, maize and milk value chains. Also, creation of awareness on aflatoxin management through training of farmers and other stakeholders and enforcement of regular surveillance of aflatoxin in food and feed chains are recommended strategies. This literature review addresses the current situation of aflatoxin occurrence in maize, dairy feeds and milk produced and traded in Kenya and current technologies applied to aflatoxin management at the farm level. Finally, a case study in Kenya on successful application of GAP for mitigation of aflatoxin risk at small-scale farms will be reviewed.
Collapse
|
5
|
Muaz K, Riaz M, Oliveira CAFD, Akhtar S, Ali SW, Nadeem H, Park S, Balasubramanian B. Aflatoxin M1 in milk and dairy products: global occurrence and potential decontamination strategies. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1873387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khurram Muaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Riaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | | |
Collapse
|
6
|
Ahlberg S, Kärki P, Kolmonen M, Korhonen H, Joutsjoki V. Aflatoxin M1 binding by lactic acid bacteria in milk. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2019.2461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This research focused on biocontrol solution to increase food safety through studying lactic acid bacteria (LAB) which can bind aflatoxins in milk. Aflatoxins are toxic contaminants found in feeds and foods. In milk aflatoxin is found in metabolised form, aflatoxin M1 (AFM1). Three indigenous LAB Lactobacillus strains and one Lactococcus strain isolated from Kenyan spontaneously fermented foods were tested for their AFM1 binding abilities in different conditions and after different treatments along with two reference Lactobacillus strains. Binding of AFM1 in different concentrations was examined with unconcentrated, concentrated, heat treated and concentrated heat-treated LAB cultures. Observed binding of AFM1 by LAB varied between 11 to 100%, being approximately at the level of 40% throughout the analysis sets. The results of this study suggest that the aflatoxin binding ability by LAB strain is not strongly strain specific and depends on many external and condition variables. Also, the methods used in determination of aflatoxin binding warrant critical evaluation.
Collapse
Affiliation(s)
- S. Ahlberg
- University of Helsinki, P.O. Box 3 (Fabianinkatu 33), 00014 Helsinki, Finland
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - P. Kärki
- University of Helsinki, P.O. Box 3 (Fabianinkatu 33), 00014 Helsinki, Finland
| | - M. Kolmonen
- Finnish Food Authority, PL 100, 00027 Ruokavirasto, Helsinki, Finland
| | - H. Korhonen
- Natural Resources Institute Finland (Luke) P.O. Box 2, 00791 Helsinki, Finland
| | - V. Joutsjoki
- Natural Resources Institute Finland (Luke) P.O. Box 2, 00791 Helsinki, Finland
| |
Collapse
|
7
|
Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1403-1436. [PMID: 33336904 DOI: 10.1111/1541-4337.12481] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 12/18/2022]
Abstract
Fungal contamination of food and animal feed, especially by mycotoxigenic fungi, is not only a global food quality concern for food manufacturers, but it also poses serious health concerns because of the production of a variety of mycotoxins, some of which present considerable food safety challenges. In today's mega-scale food and feed productions, which involve a number of processing steps and the use of a variety of ingredients, fungal contamination is regarded as unavoidable, even good manufacturing practices are followed. Chemical preservatives, to some extent, are successful in retarding microbial growth and achieving considerably longer shelf-life. However, the increasing demand for clean label products requires manufacturers to find natural alternatives to replace chemically derived ingredients to guarantee the clean label. Lactic acid bacteria (LAB), with the status generally recognized as safe (GRAS), are apprehended as an apt choice to be used as natural preservatives in food and animal feed to control fungal growth and subsequent mycotoxin production. LAB species produce a vast spectrum of antifungal metabolites to inhibit fungal growth; and also have the capacity to adsorb, degrade, or detoxify fungal mycotoxins including ochratoxins, aflatoxins, and Fusarium toxins. The potential of many LAB species to circumvent spoilage associated with fungi has been exploited in a variety of human food and animal feed stuff. This review provides the most recent updates on the ability of LAB to serve as antifungal and anti-mycotoxigenic agents. In addition, some recent trends of the use of LAB as biopreservative agents against fungal growth and mycotoxin production are highlighted.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| |
Collapse
|
8
|
Aflatoxin Binders in Foods for Human Consumption-Can This be Promoted Safely and Ethically? Toxins (Basel) 2019; 11:toxins11070410. [PMID: 31337106 PMCID: PMC6669551 DOI: 10.3390/toxins11070410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Aflatoxins continue to be a food safety problem globally, especially in developing regions. A significant amount of effort and resources have been invested in an attempt to control aflatoxins. However, these efforts have not substantially decreased the prevalence nor the dietary exposure to aflatoxins in developing countries. One approach to aflatoxin control is the use of binding agents in foods, and lactic acid bacteria (LAB) have been studied extensively for this purpose. However, when assessing the results comprehensively and reviewing the practicality and ethics of use, risks are evident, and concerns arise. In conclusion, our review suggests that there are too many issues with using LAB for aflatoxin binding for it to be safely promoted. Arguably, using binders in human food might even worsen food safety in the longer term.
Collapse
|