1
|
Oushyani Roudsari Z, Karami Y, Khoramrooz SS, Rouhi S, Ghasem H, Khatami SH, Alizadeh M, Ahmad Khosravi N, Mansoriyan A, Ghasemi E, Movahedpour A, Dargahi Z. Electrochemical and optical biosensors for the detection of E. Coli. Clin Chim Acta 2024; 565:119984. [PMID: 39401653 DOI: 10.1016/j.cca.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousof Karami
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Hassan Ghasem
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ahmad Khosravi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mansoriyan
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Zahra Dargahi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Liu S, Wang Z, Wang M, Meng T, Zhang Y, Zhang W, Sui Z. Evaluation of volume-based flow cytometry as a potential primary method for quantification of bacterial reference material. Talanta 2023; 255:124197. [PMID: 36571974 DOI: 10.1016/j.talanta.2022.124197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Bacterial reference materials (RMs) play a crucial role in many analytical processes of microbiological detection. Currently, bacteria are typically counted using the traditional plate-based approach, which results in a higher uncertainty of bacterial RMs unfortunately. Therefore, novel methods are urgently required for the value assignment of RMs in the field of microbiology to derive measurement traceability and accuracy. A potential primary method for microbiological quantification based on flow cytometry (FCM) is described in this study using Escherichia coli O157 (E. coli O157) as an example. The proposed method was applied to determine the number of viable E. coli O157 cells in the RMs with a result of (5.48 ± 0.27) × 108 cells mL-1, which was in good agreement with the result obtained using the plate-based method (En = 0.47). Additionally, this method could be entirely described and understood by equations, and provides formal traceability to the SI for counts of viable bacterial cells, while the associated relative expanded uncertainty (4.93%, k = 2) was significantly lower in comparison to the plate-based method. Therefore, the FCM-based method might be a potential primary method for characterizing bacterial RMs. To our knowledge, this is the first description of FCM as a potential primary method for accurate and traceable quantification of viable bacterial cells with a comprehensive uncertainty statement in microbiological metrology.
Collapse
Affiliation(s)
- Siyuan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Tao Meng
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
3
|
Sun Y, Kuo C, Lu C, Lin C. Review of recent advances in improved lateral flow immunoassay for the detection of pathogenic
Escherichia
coli
O157
:
H7
in foods. J Food Saf 2020. [DOI: 10.1111/jfs.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yu‐Ling Sun
- Aquatic Technology Laboratories Agricultural Technology Research Institute Hsinchu Taiwan
| | - Chiu‐Mei Kuo
- Bioresource Collection and Research Center Food Industry Research and Development Institute Hsinchu Taiwan
| | - Chung‐Lun Lu
- Aquatic Technology Laboratories Agricultural Technology Research Institute Hsinchu Taiwan
| | - Chih‐Sheng Lin
- Department of Biological Science and Technology National Chiao Tung University Hsinchu Taiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B) National Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
4
|
Kim JH, Oh SW. Rapid and sensitive detection of E. coli O157:H7 and S. Typhimurium in iceberg lettuce and cabbage using filtration, DNA concentration, and qPCR without enrichment. Food Chem 2020; 327:127036. [PMID: 32446024 DOI: 10.1016/j.foodchem.2020.127036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 12/26/2022]
Abstract
The outbreaks due to the low number of foodborne pathogens present in ready-to-eat products can be prevented by rapid and sensitive detection method. However, as a conventional detection method, it is impossible to monitor foodborne bacteria existing which is less than 50 cfu/25 g in a food. This study was designed to investigate the possibility of detecting 1 cfu in the short-term through filtration, DNA concentration, and qPCR. As a result of the filtration + DNA concentration method, the recovery concentrations of Escherichia coli O157:H7 and Salmonella Typhimurium was not significantly different from initial inoculation (>7 cfu/25 g). In iceberg lettuce and cabbage, this method was able to detect 7 and 7 cfu/25 g of E. coli and 68 and 5 cfu/25 g of S. Typhimurium. We demonstrated the potential of the filtration + DNA concentration method as a shorter time alternative to conventional enrichment-based rapid detection in vegetables.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Foods and Nutrition, Kookmin University, Seoul 136-702, Republic of Korea
| | - Se-Wook Oh
- Department of Foods and Nutrition, Kookmin University, Seoul 136-702, Republic of Korea.
| |
Collapse
|
5
|
Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent. Appl Environ Microbiol 2020; 86:AEM.01435-20. [PMID: 32591386 PMCID: PMC7440785 DOI: 10.1128/aem.01435-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus and other coagulase-positive Staphylococcus spp. bind the Fc region of IgG antibodies through expression of protein A (SpA). These species have consequently been a source of false-positive signals in antibody-based assays designed to detect other target bacteria. Here, flow cytometry was used to study the influence of a number of factors on the SpA-mediated binding of single cells to an anti-human IgG antibody, including strain, heat killing, overnight storage, growth phase, cell physiology, surface adhesion, and growth in model food systems. Through the costaining of antibody-stained cells with the permeability dye propidium iodide and calcein violet AM, the cell physiological status was related to SpA-mediated antibody binding. Generally, permeabilized cells lacking esterase activity did not strongly bind antibody. The binding of a number of commercially available polyclonal IgG antibodies to non-Staphylococcus spp. was also characterized. Not all SpA-expressing species showed strong binding of mouse IgG, and one species not known to express SpA showed strong binding. Most SpA-expressing strains bound rabbit IgG antibodies to some extent, whereas only one strain bound goat IgG. To reduce or eliminate SpA-mediated IgG binding, the following products were evaluated as blocking reagents and applied prior to staining with primary or secondary antibody: normal rabbit serum, mouse IgG isotype control, goat IgG, and a commercial FcR blocking reagent. Only the FcR blocking reagent consistently reduced SpA-mediated binding of Staphylococcus spp. to antibodies against other species and could be recommended as a blocking reagent in immunoassays designed to detect non-Staphylococcus species.IMPORTANCE This study characterizes a widespread but little-studied problem associated with the antibody-based detection of microbes-the Staphylococcus protein A (SpA)-mediated binding of IgG antibodies-and offers a solution: the use of commercial FcR blocking reagent. A common source of false-positive signals in the detection of microbes in clinical, food, or environmental samples can be eliminated by applying this study's findings. Using flow cytometry, the authors demonstrate the extent of heterogeneity in a culture's SpA-mediated binding of antibodies and that the degree of SpA-mediated antibody binding is strain, growth phase, and food matrix dependent and influenced by simulated food processing treatments and cell adherence. In addition, our studies of SpA-mediated binding of Staphylococcus spp. to antibodies against other bacterial species produced a very nuanced picture, leading us to recommend testing against multiple strains of S. aureus and S. hyicus of all antibodies to be incorporated into any immunoassay designed to detect a non-Staphylococcus spp.
Collapse
|
6
|
O'Grady J, Cronin U, Tierney J, Piterina AV, O'Meara E, Wilkinson MG. Gaps in the assortment of rapid assays for microorganisms of interest to the dairy industry. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:1-56. [PMID: 32948264 PMCID: PMC7426214 DOI: 10.1016/bs.aambs.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review presents the results of a study into the offering of rapid microbial detection assays to the Irish dairy industry. At the outset, a consultation process was undertaken whereby key stakeholders were asked to compile a list of the key microorganisms of interest to the sector. The resultant list comprises 19 organisms/groups of organisms divided into five categories: single pathogenic species (Cronobacter sakazakii, Escherichia coli and Listeria monocytogenes); genera containing pathogenic species (Bacillus, Clostridium, Listeria, Salmonella; Staphylococcus); broad taxonomic groupings (Coliforms, Enterobacteriaceae, fecal Streptococci, sulfite reducing bacteria/sulfite reducing Clostridia [SRBs/SRCs], yeasts and molds); organisms displaying certain growth preferences or resistance as regards temperature (endospores, psychrotrophs, thermodurics, thermophiles); indicators of quality (total plate count, Pseudomonas spp.). A survey of the rapid assays commercially available for the 19 organisms/groups of organisms was conducted. A wide disparity between the number of rapid tests available was found. Four categories were used to summarize the availability of rapid assays per organism/group of organisms: high coverage (>15 assays available); medium coverage (5-15 assays available); low coverage (<5 assays available); no coverage (0 assays available). Generally, species or genera containing pathogens, whose presence is regulated-for, tend to have a good selection of commercially available rapid assays for their detection, whereas groups composed of heterogenous or even undefined genera of mainly spoilage organisms tend to be "low coverage" or "no coverage." Organisms/groups of organisms with "low coverage" by rapid assays include: Clostridium spp.; fecal Streptococci; and Pseudomonas spp. Those with "no coverage" by rapid assays include: endospores; psychrotrophs; SRB/SRCs; thermodurics; and thermophiles. An important question is: why have manufacturers of rapid microbiological assays failed to respond to the necessity for rapid methods for these organisms/groups of organisms? The review offers explanations, ranging from the technical difficulty involved in detecting as broad a group as the thermodurics, which covers the spores of multiple sporeforming genera as well at least six genera of mesophilic nonsporeformers, to the taxonomically controversial issue as to what constitutes a fecal Streptococcus or SRBs/SRCs. We review two problematic areas for assay developers: validation/certification and the nature of dairy food matrices. Development and implementation of rapid alternative test methods for the dairy industry is influenced by regulations relating to both the microbiological quality standards and the criteria alternative methods must meet to qualify as acceptable test methods. However, the gap between the certification of developer's test systems as valid alternative methods in only a handful of representative matrices, and the requirement of dairy industries to verify the performance of alternative test systems in an extensive and diverse range of dairy matrices needs to be bridged before alternative methods can be widely accepted and adopted in the dairy industry. This study concludes that many important dairy matrices have effectively been ignored by assay developers.
Collapse
Affiliation(s)
- John O'Grady
- Dairy Processing Technology Centre, University of Limerick, Limerick, Ireland
| | - Ultan Cronin
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Joseph Tierney
- Glanbia Ingredients Ireland, Ballyragget, Co. Kilkenny, Ireland
| | - Anna V Piterina
- Dairy Processing Technology Centre, University of Limerick, Limerick, Ireland
| | - Elaine O'Meara
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Martin G Wilkinson
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
7
|
G-quadruplex-based assay combined with aptamer and gold nanoparticles for Escherichia coli K88 determination. Mikrochim Acta 2020; 187:308. [PMID: 32356133 DOI: 10.1007/s00604-020-04291-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric method was developed using G-quadruplex and gold nanoparticles (AuNPs) for determination of Escherichia coli K88 (ETEC K88). It was composed of two modules: (1) an aptamer as biorecognizing element and (2) a capturing DNA (modified with AuNPs at 5') as a transducer. In the absence of target bacteria, the aptamer can form stable double strands with capturing DNA, preventing the binding of capturing DNA to the G-quadruplex. However, the double strands of capturing DNA and aptamer are untied due to the stronger binding of aptamers to bacteria in the presence of target bacteria. As a result, the G-quadruplex binds to capture DNA and leads to the aggregation and color change of AuNPs, which can be monitored by a spectrophotometer or visualization. The quantitative determination was achieved by monitoring the optical density change of AuNPs solution at 524 nm after target addition. Under optimal conditions, the method has a low detection limit (1.35 × 102 CFU mL-1) and a linear response in the range 102 to 106 CFU mL-1. Graphical abstract The manuscripts describe a colorimetric method for the detection of ETEC K88 by using intermolecular G-quadruplex to induce the agglomeration of gold nanoparticles, which can be directly used to determine the presence of bacteria with our naked eyes.
Collapse
|