1
|
Gharib G, Bütün İ, Muganlı Z, Kozalak G, Namlı İ, Sarraf SS, Ahmadi VE, Toyran E, van Wijnen AJ, Koşar A. Biomedical Applications of Microfluidic Devices: A Review. BIOSENSORS 2022; 12:1023. [PMID: 36421141 PMCID: PMC9688231 DOI: 10.3390/bios12111023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İsmail Bütün
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Zülâl Muganlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Gül Kozalak
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İlayda Namlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | | | | | - Erçil Toyran
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
2
|
Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Mu D, Zhou D, Xie G, Liu J, Wang Z, Xiong Q, Xu H. Real-time recombinase-aided amplification with PMAxx for the rapid detection of viable Escherichia coli O157:H7 in milk. J Dairy Sci 2022; 105:1028-1038. [PMID: 34998542 DOI: 10.3168/jds.2021-21074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli O157:H7, the causative agent of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in humans, generates a effective harm to community health because of its high pathogenicity. A real-time recombinase-aided amplification (rRAA) is an emerging method for nucleic acid detection. However, genomic DNA of bacteria could exist in food and the environment for a long time after death and could be amplified by rRAA assay, resulting in false-positive signal; thus, developing a fast and sensitive method is necessary to detect viable foodborne pathogens in food products. In our research, rRAA assay coupled with an enhanced nucleic acid binding dye named improved propidium monoazide (PMAxx) was established and applied in viable E. coli O157:H7 identification in skim milk. The PMAxx could eliminate interference from dead bacteria by permeating impaired membranes and covalently linking to DNA to prevent DNA amplification. The PMAxx-rRAA assay was performed with high sensitivity and good specificity. The PMAxx-rRAA assay could detect as low as 5.4 × 100 cfu/mL of viable E. coli O157:H7 in pure culture, and 7.9 × 100 cfu/mL of viable E. coli O157:H7 in skim milk. In addition, the PMAxx-rRAA assay was performed in the presence of a high concentration of dead bacteria or nontarget bacteria in skim milk to verify the capacity to resist interference from dead bacteria and nontarget bacteria. Therefore, the established PMAxx-rRAA assay is a valuable tool for the identification of viable E. coli O157:H7 in complex food matrix.
Collapse
Affiliation(s)
- Dan Mu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo, 315010, PR China
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhengzheng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
4
|
Mu D, Zhou D, Xie G, Liu J, Xiong Q, Feng X, Xu H. The fluorescent probe-based recombinase-aided amplification for rapid detection of Escherichia coli O157:H7. Mol Cell Probes 2021; 60:101777. [PMID: 34737039 DOI: 10.1016/j.mcp.2021.101777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a common foodborne morbigenous microorganism, which can spread through fecal-oral transmission. Humans can be infected by ingesting foods and water contaminated with E. coli O157:H7, which can cause various symptoms. In present study, we have successfully developed a quick and hypersensitive fluorescent probe-based Recombinase-aided amplification (RAA) method and applied in E. coli O157:H7 detection at 39 °C in 20 min. The sensitivity of the assay in pure E. coli O157:H7 suspension was 5.6 × 100 CFU/mL. The fluorescent probe-based RAA assay was further applied in three samples, and the limit of detection (LOD) in skimmed milk, lettuces and lake water was 5.4 × 101 CFU/mL, 7.9 × 101 CFU/mL and 5.2 × 101 CFU/mL, separately. This method showed a high sensitivity and short detection time, which has the feasible application in on-site test in real samples.
Collapse
Affiliation(s)
- Dan Mu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo, 315010, PR China.
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
5
|
Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. BIOSENSORS 2021; 11:190. [PMID: 34207580 PMCID: PMC8227973 DOI: 10.3390/bios11060190] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Foodborne disease caused by foodborne pathogens is a very important issue in food safety. Therefore, the rapid screening and sensitive detection of foodborne pathogens is of great significance for ensuring food safety. At present, many research works have reported the application of biosensors and signal amplification technologies to achieve the rapid and sensitive detection of pathogenic bacteria. Thus, this review summarized the use of biosensors coupled with signal amplification technology for the detection of pathogenic bacteria, including (1) the development, concept, and principle of biosensors; (2) types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and so on; and (3) different kinds of signal amplification technologies applied in biosensors, such as enzyme catalysis, nucleic acid chain reaction, biotin-streptavidin, click chemistry, cascade reaction, nanomaterials, and so on. In addition, the challenges and future trends for pathogenic bacteria based on biosensor and signal amplification technology were also discussed and summarized.
Collapse
Affiliation(s)
- Fengchun Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Yingchao Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Jianhan Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| |
Collapse
|
6
|
Rani A, Ravindran VB, Surapaneni A, Mantri N, Ball AS. Review: Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int J Food Microbiol 2021; 349:109233. [PMID: 34022616 DOI: 10.1016/j.ijfoodmicro.2021.109233] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Escherichia coli O157:H7, a Shiga-producing E. coli is a major pathogenic E. coli strain which since the early 1980s has become a crucial food and water-borne pathogen. Several management strategies can be applied to control the spread of infection; however early diagnosis represents the optimum preventive strategy to minimize the infection. Therefore, it is crucial to detect this pathogen in a fast and efficient manner in order to reduce the morbidity and mortality. Currently used gold standard tests rely on culture and pre-enrichment of E. coli O157:H7 from the contaminated source; they are time consuming and laborious. Molecular methods such as polymerase chain reaction are sensitive; however, they require expensive instrumentation. Therefore, there is a requirement for Accurate, Sensitive, Specific, User friendly, Rapid, Equipment free and Deliverable (ASSURED) detection methods for use in the laboratory and in the field. Emerging technologies such as isothermal amplification methods, biosensors, surface enhanced Raman Spectroscopy, paper-based diagnostics and smartphone-based digital methods are recognized as new approaches in the field of E. coli O157:H7 diagnostics and are discussed in this review. Mobile PCR and CRISPR-Cas diagnostic platforms have been identified as new tools in E. coli O157:H7 POC diagnostics with the potential for implementation by industry. This review describes advances and progress in the field of E. coli O157:H7 diagnosis in the context of food and water industry. The focus is on emerging high throughput point-of-care (POC) E. coli O157:H7 diagnostics and the requirement for the transformation to service routine diagnostics in the food and water industry.
Collapse
Affiliation(s)
- Alka Rani
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia.
| | - Vivek B Ravindran
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia; South East Water, Frankston, Victoria 3199, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia
| |
Collapse
|
7
|
Liu C, Fang S, Tian Y, Wu Y, Wu M, Wang Z, Xu D, Hou D, Liu Q. An Aggregation-Induced Emission Material Labeling Antigen-Based Lateral Flow Immunoassay Strip for Rapid Detection of Escherichia coli O157:H7. SLAS Technol 2021; 26:377-383. [PMID: 33435797 DOI: 10.1177/2472630320981935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a dangerous foodborne pathogen, mainly found in beef, milk, fruits, and their products, causing harm to human health or even death. Therefore, the detection of E. coli O157:H7 in food is particularly important. In this paper, we report a lateral flow immunoassay strip (LFIS) based on aggregation-induced emission (AIE) material labeling antigen as a fluorescent probe for the rapid detection of E. coli O157:H7. The detection sensitivity of the strip is 105 CFU/mL, which is 10 times higher than that of the colloidal gold test strip. This method has good specificity and stability and can be used to detect about 250 CFU of E. coli O157:H7 successfully in 25 g or 25 mL of beef, jelly, and milk. AIE-LFIS might be valuable in monitoring food pathogens for rapid detection.
Collapse
Affiliation(s)
- Cheng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuiqin Fang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Youxue Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Meijiao Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zheng Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongjun Hou
- China Animal Disease Control Centre, Beijing, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Oropesa-Nuñez R, Zardán Gómez de la Torre T, Stopfel H, Svedlindh P, Strömberg M, Gunnarsson K. Insights into the Formation of DNA-Magnetic Nanoparticle Hybrid Structures: Correlations between Morphological Characterization and Output from Magnetic Biosensor Measurements. ACS Sens 2020; 5:3510-3519. [PMID: 33141554 PMCID: PMC7706118 DOI: 10.1021/acssensors.0c01623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Understanding
the binding mechanism between probe-functionalized
magnetic nanoparticles (MNPs) and DNA targets or amplification products
thereof is essential in the optimization of magnetic biosensors for
the detection of DNA. Herein, the molecular interaction forming hybrid
structures upon hybridization between DNA-functionalized magnetic
nanoparticles, exhibiting Brownian relaxation, and rolling circle
amplification products (DNA-coils) is investigated by the use of atomic
force microscopy in a liquid environment and magnetic biosensors measuring
the frequency-dependent magnetic response and the frequency-dependent
modulation of light transmission. This approach reveals the qualitative
and quantitative correlations between the morphological features of
the hybrid structures with their magnetic response. The suppression
of the high-frequency peak in the magnetic response and the appearance
of a new peak at lower frequencies match the formation of larger sized
assemblies upon increasing the concentration of DNA-coils. Furthermore,
an increase of the DNA-coil concentration induces an increase in the
number of MNPs per hybrid structure. This study provides new insights
into the DNA–MNP binding mechanism, and its versatility is
of considerable importance for the mechanistic characterization of
other DNA-nanoparticle biosensor systems.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Teresa Zardán Gómez de la Torre
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Henry Stopfel
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Mattias Strömberg
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Klas Gunnarsson
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| |
Collapse
|
9
|
Liu C, Fang S, Tian Y, Ma J, Wang Z, Xu D, Li Y, Hou D, Liu Q. Rapid detection of
Escherichia coli
O157
:
H7
in milk, bread, and jelly by lac dye
coloration‐based
bidirectional lateral flow immunoassay strip. J Food Saf 2020. [DOI: 10.1111/jfs.12862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Shuiqin Fang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Zheng Wang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ying Li
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Dongjun Hou
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Qing Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|