1
|
Alvarenga VO, Brito LM, Lacerda ICA. Application of mathematical models to validate emerging processing technologies in food. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Ultrasound, Acetic Acid, and Peracetic Acid as Alternatives Sanitizers to Chlorine Compounds for Fresh-Cut Kale Decontamination. Molecules 2022; 27:molecules27207019. [DOI: 10.3390/molecules27207019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorinated compounds are usually applied in vegetable sanitization, but there are concerns about their application. Thus, this study aimed to evaluate ultrasound (50 kHz), acetic acid (1000; 2000 mg/L), and peracetic acid (20 mg/L) and their combination as alternative treatments to 200 mg/L sodium dichloroisocyanurate. The overall microbial, physicochemical, and nutritional quality of kale stored at 7 °C were assessed. The impact on Salmonella enterica Typhimurium was verified by plate-counting and scanning electron microscopy. Ultrasound combined with peracetic acid exhibited higher reductions in aerobic mesophiles, molds and yeasts, and coliforms at 35 °C (2.6; 2.4; 2.6 log CFU/g, respectively). Microbial counts remained stable during storage. The highest reduction in Salmonella occurred with the combination of ultrasound and acetic acid at 1000 mg/L and acetic acid at 2000 mg/L (2.8; 3.8 log CFU/g, respectively). No synergistic effect was observed with the combination of treatments. The cellular morphology of the pathogen altered after combinations of ultrasound and acetic acid at 2000 mg/L and peracetic acid. No changes in titratable total acidity, mass loss, vitamin C, or total phenolic compounds occurred. Alternative treatments presented equal to or greater efficacies than chlorinated compounds, so they could potentially be used for the decontamination of kale.
Collapse
|
3
|
Kyaw KS, Adegoke SC, Ajani CK, Nwabor OF, Onyeaka H. Toward in-process technology-aided automation for enhanced microbial food safety and quality assurance in milk and beverages processing. Crit Rev Food Sci Nutr 2022; 64:1715-1735. [PMID: 36066463 DOI: 10.1080/10408398.2022.2118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ensuring the safety of food products is critical to food production and processing. In food processing and production, several standard guidelines are implemented to achieve acceptable food quality and safety. This notwithstanding, due to human limitations, processed foods are often contaminated either with microorganisms, microbial byproducts, or chemical agents, resulting in the compromise of product quality with far-reaching consequences including foodborne diseases, food intoxication, and food recall. Transitioning from manual food processing to automation-aided food processing (smart food processing) which is guided by artificial intelligence will guarantee the safety and quality of food. However, this will require huge investments in terms of resources, technologies, and expertise. This study reviews the potential of artificial intelligence in food processing. In addition, it presents the technologies and methods with potential applications in implementing automated technology-aided processing. A conceptual design for an automated food processing line comprised of various operational layers and processes targeted at enhancing the microbial safety and quality assurance of liquid foods such as milk and beverages is elaborated.
Collapse
Affiliation(s)
- Khin Sandar Kyaw
- Department of International Business Management, Didyasarin International College, Hatyai University, Songkhla, Thailand
| | - Samuel Chetachukwu Adegoke
- Joint School of Nanoscience and Nanoengineering, Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Clement Kehinde Ajani
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ozioma Forstinus Nwabor
- Infectious Disease Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
4
|
OCAÑA DE JESÚS RL, IBÁÑEZ ATG, PUEBLA IR, DÍAZ AG, ROMERO PGR, SÁNCHEZ JV, SEGUNDO CT, VALENCIA HM. Microbiological study of the effect of a dielectric barrier discharge interaction on processed orange juices exposed to the environment. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.02622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Perera CO, Alzahrani MAJ. Ultrasound as a pre-treatment for extraction of bioactive compounds and food safety: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Aguilar C, Serna-Jiménez J, Benitez E, Valencia V, Ochoa O, Sotelo LI. Influence of high power ultrasound on natural microflora, pathogen and lactic acid bacteria in a raw meat emulsion. ULTRASONICS SONOCHEMISTRY 2021; 72:105415. [PMID: 33333392 PMCID: PMC7803822 DOI: 10.1016/j.ultsonch.2020.105415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Raw meat emulsions may have natural, spoilage and pathogenic microorganisms due to the origin and characteristics of this food matrix. All of these microorganisms must be minimized during industrial processing to make food consumption safe and meet quality regulations. Therefore, in this research, the effect of probe ultrasound on the inactivation of three kinds of microorganisms in a raw meat emulsion is evaluated. The microorganisms are: natural microflora NAM, Listeria monocytogenes LIS, and Lactobacillus delbrueckii LAC. A high-intensity probe ultrasound system was used, during 1.0, 2.5, 5.0, 7.5 and 10 min, with pulsed waves of 0.0, 10, 20 and 30 seg, and 200, 250, 300, 350 and 400 W of power. The interrelation between time, wave pulse cycle, and power factors was assessed. The results showed a positive linear independence effect in the treatments without wave pulse for each microorganism, and a quadratic interaction with the time and the ultrasound power for the inactivation of the three kinds of microorganisms. Besides, the desirability function for the inactivation reached up to 60% of the microbial population with the probe ultrasound treatment, with 10 min, a 7.56 s wave pulse and 400 W of power. Thus, these results could be useful to decide the incorporation of mild and emerging technologies in a meat industry line process.
Collapse
Affiliation(s)
- C Aguilar
- Agroindustrial Process Research Group, Universidad de La Sabana, Campus Puente del Común, Autopista Norte Km 7, Chía, Cundinamarca, Colombia
| | - J Serna-Jiménez
- Agricultural and Agro-Business Sciences Faculty, Universidad Tecnológica de Pereira, Carrera 27 #10-02 Pereira, Risaralda, Colombia
| | - E Benitez
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Campus Universitario, Pamplona, Navarra, Spain
| | - V Valencia
- Centro de Investigación y Desarrollo Cárnico, Industria de Alimentos Zenú S.A.S., Carrera 64C # 104 - 03, Medellín, Colombia
| | - O Ochoa
- Centro de Investigación y Desarrollo Cárnico, Industria de Alimentos Zenú S.A.S., Carrera 64C # 104 - 03, Medellín, Colombia
| | - L I Sotelo
- EICEA, Food, Process Management and Service Group Universidad de La Sabana, Campus Puente del Común, Autopista Norte Km 7, Chía, Cundinamarca, Colombia.
| |
Collapse
|
8
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
9
|
Nangul A, Bozkurt H, Gupta S, Woolf A, Phan-Thien KY, McConchie R, Fletcher GC. Decline of Listeria monocytogenes on fresh apples during long-term, low-temperature simulated international sea-freight transport. Int J Food Microbiol 2021; 341:109069. [PMID: 33508582 DOI: 10.1016/j.ijfoodmicro.2021.109069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/01/2021] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes has caused outbreaks of foodborne illness from apples in the USA, and is also a major issue for regulatory compliance worldwide. Due to apple's significance as an important export product from New Zealand, we aimed to determine the effect of long-term, low-temperature sea-freight from New Zealand to the USA (July) and Europe (March-April), two key New Zealand markets, on the survival and/or growth of L. monocytogenes on fresh apples. Temperature and humidity values were recorded during a shipment to each market (USA and Europe), then the observed variations around the 0.5 °C target temperature were simulated in laboratory trials using open ('Scired') and closed ('Royal Gala' for the USA and 'Cripps Pink' for Europe) calyx cultivars of apples inoculated with a cocktail of 107-108 cells of seven strains of L. monocytogenes. Samples were analysed for L. monocytogenes quantification at various intervals during the simulation and on each occasion, an extra set was analysed after a subsequent 8 days at 20 °C. When both the sea-freight simulations concluded, L. monocytogenes showed 5 log reductions on the equatorial surface of skin of apples, but only about 2.5 log reduction for USA and about 3.3 log reduction for Europe in the calyx. Cultivar type had no significant effect on the survival of L. monocytogenes for both sea-freight simulations, either in the calyx or on the skin (P > 0.05). Most of the reduction in the culturable cells on the skin occurred during the initial 2 weeks of the long-term storage simulations. There was also no significant difference in the reduction of L. monocytogenes at 0.5 or 20 °C. No correlation was observed between firmness or total soluble solids and survival of L. monocytogenes. Because the inoculated bacterial log reduction was lower in the calyx than on the skin, it is speculated that the risk of causing illness is higher if contaminated apple cores are eaten. The result suggested that the international sea-freight transportation does not result in the growth of L. monocytogenes irrespective of time and temperature. The results of this study provide useful insights into the survival of L. monocytogenes on different apple cultivars that can be used to develop effective risk mitigation strategies for fresh apples during long-term, low-temperature international sea-freight transportation.
Collapse
Affiliation(s)
- Agam Nangul
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Hayriye Bozkurt
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Sravani Gupta
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Allan Woolf
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Kim-Yen Phan-Thien
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Robyn McConchie
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| |
Collapse
|
10
|
Bonah E, Huang X, Hongying Y, Harrington Aheto J, Yi R, Yu S, Tu H. Nondestructive monitoring, kinetics and antimicrobial properties of ultrasound technology applied for surface decontamination of bacterial foodborne pathogen in pork. ULTRASONICS SONOCHEMISTRY 2021; 70:105344. [PMID: 32992130 PMCID: PMC7786579 DOI: 10.1016/j.ultsonch.2020.105344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/05/2020] [Indexed: 05/05/2023]
Abstract
In this study, electronic nose (E-nose) and Hyperspectral Imaging (HSI) was employed for nondestructive monitoring of ultrasound efficiency (20KHZ) in the inactivation of Salmonella Typhimurium, and Escherichia coli in inoculated pork samples treated for 10, 20 and 30 min. Weibull, and Log-linear model fitted well (R2 ≥ 0.9) for both Salmonella Typhimurium, and Escherichia coli inactivation kinetics. The study also revealed that ultrasound has antimicrobial effects on the pathogens. For qualitative analysis, unsupervised (PCA) and supervised (LDA) chemometric algorithms were applied. PCA was used for successful sample clustering and LDA approach was used to construct statistical models for the classification of ultrasound treated and untreated samples. LDA showed classification accuracies of 99.26%,99.63%,99.70%, 99.43% for E-nose - S. Typhimurium, E-nose -E. coli, HSI - S. Typhimurium and HSI -E. coli respectively. PLSR quantitative models showed robust models for S. Typhimurium- (E-nose Rp2 = 0.9375, RMSEP = 0.2107 log CFU/g and RPD = 9.7240 and (HSI Rp2 = 0.9687 RMSEP = 0.1985 log CFU/g and RPD = 10.3217) and E. coli -(E-nose -Rp2 = 0.9531, RMSEP = 0.2057 log CFU/g and RPD = 9.9604) and (HIS- Rp2 = 0.9687, RMSEP = 0.2014 log CFU/g and RPD = 10.1731). This novel study shows the overall effectiveness of applying E-nose and HSI for in-situ and nondestructive detection, discrimination and quantification of bacterial foodborne pathogens during the application of food processing technologies like ultrasound for pathogen inactivation.
Collapse
Affiliation(s)
- Ernest Bonah
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China; Food and Drugs Authority, Laboratory Services Department, P. O. Box CT 2783, Cantonments, Accra, Ghana
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Yang Hongying
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Joshua Harrington Aheto
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China; School of Smart Agriculture, Suzhou Polytechnic Institute of Agriculture, XiYuan Road 279, Suzhou 215000, PR China
| | - Ren Yi
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China; Food and Drugs Authority, Laboratory Services Department, P. O. Box CT 2783, Cantonments, Accra, Ghana
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Hongyang Tu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
11
|
Inactivation of Bacillus cereus from pork by thermal, non-thermal and single-frequency/multi-frequency thermosonication: Modelling and effects on physicochemical properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Xiao F, Wang Y, Shao T, Jin G. Acetonitrilated Unsymmetric BODIPYs having glycine fluorescence responsive quenching: Design, synthesis and spectroscopic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118211. [PMID: 32155579 DOI: 10.1016/j.saa.2020.118211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
A series of novel N≡C-CH2-B-F system BODIPY were designed and synthesized by introducing aldehyde and acetonitrile units which gave positive influence to spectroscopic and chemical properties of BODIPY derivatives. The effects of glycine (Gly) on the target products were studied via ultraviolet and visible spectrophotometry (UV-Vis) and photoluminescence (PL) under different conditions of the presence and absence of cations (K+, Ca2+, Zn2+). It was showed that glycine has an intense quenching effect on the compounds in both the presence and absence of ions with a dramatic color change from notable red to light orange owing to the addition of Gly. With regard to cells imaging investigation, the products showed the prominent fluorescence in cholangiocarcinoma cells. The luminescent effect of compounds 1 and 3 entering the cells was significantly stronger than that of compound 2. In addition, pertaining to anticancer properties, two human cancer cell lines (RBE, HCCC-9810) and one normal cell line (L-02) were evaluated for in vitro cytotoxicity. The target compounds, 1-3, exhibited moderate antitumor activity, of which compound 1 was found to be the most potent derivative with IC50 values of 119.31 ± 6.25, 114.73 ± 3.25, and 106.33 ± 5.22 against RBE, HCCC-9810, and L-02 cells, respectively, slightly weaker than the positive control 5-FU.
Collapse
Affiliation(s)
- Fuyan Xiao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuling Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Tingyu Shao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|