1
|
Alves JM, Alvarenga VO, Tavares da Silva R, de Souza Pedrosa GT, Silva FA, Bicca GB, Baldwin C, Schaffner DW, Magnani M. Predicting the impact of temperature and relative humidity on Salmonella growth and survival in sliced chard, broccoli and red cabbage. Food Microbiol 2024; 120:104495. [PMID: 38431315 DOI: 10.1016/j.fm.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
This study assessed the fate of a Salmonella enterica cocktail (S. Typhimurium, S. Enteritidis, S. Newport, S. Agona and S. Anatum; initial counts 3.5 log CFU/g) in minimally processed sliced chard, broccoli and red cabbage at 16 conditions of different temperature (7, 14, 21 and 37 °C) and relative humidity (RH; 15, 35, 65 and 95%) over six days (144 h). Linear regression was used to estimate the rate change of Salmonella in cut vegetables as a function of temperature and relative humidity (RH). R2 value of 0.85, 0.87, and 0.78 were observed for the rates of change in chard, broccoli, and red cabbage, respectively. The interaction between temperature and RH was significant in all sliced vegetables. Higher temperatures and RH values favored Salmonella growth. As temperature or RH decreased, the rate of S. enterica change varied by vegetable. The models developed here can improve risk management of Salmonella in fresh cut vegetables.
Collapse
Affiliation(s)
- Jade Morais Alves
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Verônica Ortiz Alvarenga
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Geany Targino de Souza Pedrosa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Gerson Balbueno Bicca
- Department of Food Engineering, Federal University of Rondônia, Ariquemes, Rondônia, Brazil
| | - Clif Baldwin
- Stockton University - Department of Data Science and Strategic Analytics, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
2
|
Oscar TP. Poultry Food Assess Risk Model for Salmonella and Chicken Gizzards: III. Dose Consumed Step. J Food Prot 2024; 87:100242. [PMID: 38360409 DOI: 10.1016/j.jfp.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
The Dose Consumed step of the Poultry Food Assess Risk Model (PFARM) for Salmonella and chicken gizzards was presented and compared to the Exposure Assessment step of Quantitative Microbial Risk Assessment (QMRA). The specific objectives were 1) to demonstrate the dose consumed step of PFARM for Salmonella and chicken gizzards; 2) to compare Salmonella dose consumed from cooked chicken gizzards to that from cross-contaminated and temperature-abused lettuce; 3) to determine if Salmonella dose consumed changed over time in a production chain; and 4) to compare PFARM and QMRA predictions of Salmonella dose consumed. The PFARM and QMRA were developed in an Excel notebook and simulated with @Risk. Salmonella prevalence and number data (P = 100) for chicken gizzards (56 g) and scenario analysis were used to address objectives 1, 2, and 4, whereas running windows of 60 consecutive chicken gizzard samples and scenario analysis were used to address objective 3. A lot size of 1,000 kg of chicken gizzards was simulated. Mean portion size was 168 g resulting in the simulation of 5,952 meals per lot. Of these, 3.69 ± 0.32% and 0.49 ± 0.07% (mean ± SD) resulted in Salmonella dose consumed of ≥1 per meal from cooked chicken gizzards and lettuce, respectively. However, the total Salmonella dose consumed per lot from cooked chicken gizzards (272 ± 27) was less (P ≤ 0.05) than from lettuce (6,050 ± 4,929) because of a few highly contaminated (>310 Salmonella) lettuce portions at consumption. Over time in the production chain, Salmonella prevalence and total dose consumed per lot changed (P ≤ 0.05) but the patterns differed. The QMRA predicted higher (P ≤ 0.05) Salmonella dose consumed per meal than PFARM. In part, this was because QMRA only simulated contaminated grams, whereas PFARM simulated contaminated and non-contaminated meals. However, other factors, which are discussed, also contributed to the overestimation of Salmonella dose consumed by QMRA.
Collapse
Affiliation(s)
- Thomas P Oscar
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Eastern Regional Research Center, Chemical Residue and Predictive Microbiology Research Unit, Room 2111, Center for Food Science and Technology, University of Maryland Eastern Shore Worksite, Princess Anne, MD 21853, USA.
| |
Collapse
|
3
|
An intelligent based prediction of microbial behaviour in beef. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Boleratz BL, Oscar TP. Use of
ComBase
data to develop an artificial neural network model for nonthermal inactivation of
Campylobacter jejuni
in milk and beef and evaluation of model performance and data completeness using the acceptable prediction zones method. J Food Saf 2022. [DOI: 10.1111/jfs.12983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bethany L. Boleratz
- US Department of Agriculture, Agricultural Research Service, Chemical Residue and Predictive Microbiology Research Unit, Center for Food Science and Technology University of Maryland Eastern Shore Princess Anne Maryland USA
| | - Thomas P. Oscar
- US Department of Agriculture, Agricultural Research Service, Chemical Residue and Predictive Microbiology Research Unit, Center for Food Science and Technology University of Maryland Eastern Shore Princess Anne Maryland USA
| |
Collapse
|
5
|
Xiao X, Tang B, Liu S, Suo Y, Yang H, Wang W. Evaluation of the Stress Tolerance of Salmonella with Different Antibiotic Resistance Profiles. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5604458. [PMID: 34568492 PMCID: PMC8457946 DOI: 10.1155/2021/5604458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Disease caused by antibiotic-resistant Salmonella is a serious clinical problem that poses a great threat to public health. The present study is aimed at assessing differences in bacterial kinetics with different antibiotic resistance profiles under environmental stress and at developing microbial tolerance models in lettuce during storage from 4 to 36°C. The drug-resistance phenotypes of 10 Salmonella Typhimurium (S. Typhimurium) isolates were examined using the broth microdilution method. The results of 10 S. Typhimurium isolates in the suspensions showed that a slow trend towards reduction of drug-sensitive (DS) isolates in relation to the others though without statistical difference. Compared to DS S. Typhimurium SA62, greater bacterial reduction was observed in multidrug-resistant (MDR) S. Typhimurium HZC3 during lettuce storage at 4°C (P < 0.05). It was likely that a cross-response between antibiotic resistance and food-associated stress tolerance. The greater growth in lettuce at 12°C was observed for DS S. Typhimurium SA62 compared to MDR S. Typhimurium HZC3 and was even statistically different (P < 0.05), while no significant difference was observed for bacterial growth between MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 strains in lettuce storage from 16 to 36°C (P > 0.05). The goodness-of-fit indices indicated the Log-linear primary model provided a satisfactory fit to describe the MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 survival at 4°C. A square root secondary model could be used to describe the effect of temperature (12, 16, 28, and 36°C) on the growth rates of S. Typhimurium HZC3 (adj - R 2 = 0.91, RMSE = 0.06) and S. Typhimurium SA62 (adj - R 2 = 0.99, RMSE = 0.01) derived from the Huang primary model. It was necessary to pay attention to the tolerance of antibiotic resistant bacteria under environmental stress, and the generated models could provide parts of the input data for microbial risk assessment of Salmonella with different antibiotic resistance profile in lettuce.
Collapse
Affiliation(s)
- Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Siyi Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yujuan Suo
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Raza J, Asmat TM, Mustafa MZ, Ishtiaq H, Mumtaz K, Jalees MM, Samad A, Shah A, Khalid S, Rehman HU. Contamination of ready-to-eat street food in Pakistan with Salmonella spp.: Implications for consumers and food safety. Int J Infect Dis 2021; 106:123-127. [PMID: 33771670 DOI: 10.1016/j.ijid.2021.03.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Ready-to-eat (RTE) food sold in Quetta, Pakistan was assessed for microbial contamination. METHODS Equal numbers of samples were collected from four categories of RTE food - burgers, shawarma, pizza and sandwiches - from January 2018 to December 2018. Microbial contamination of individual food samples was assessed by quantifying the total aerobic count obtained from plating samples on bacterial growth medium. Salmonella spp. serovars were identified using polymerase chain reaction. RESULTS Approximately 38% (121/320) of RTE food samples were not fit for human consumption. The most contaminated type of RTE food was shawarma (49%). Microbial contamination of food samples was higher in summer compared with the other seasons. Approximately 40% (49/121) of food samples that were not fit for human consumption were contamined with Salmonella spp. Salmonella enteritidis (69%) and Salmonella typhimurium (31%) were the only serovars among the samples testing positive for Salmonella spp. Of the 49 samples with high microbial counts, S. enteritidis was present in 34 samples and S. typhimurium was present in 15 samples. The antibiotic sensitivity results demonstrated that both S. enteritidis and S. typhimurium were resistant to amoxicillin. In addition, S. enteritidis was resistant to chloramphenicol and erythromycin, and S. typhimurium presented high resistance to erythromycin. Both S. typhimurium and S. enteritidis were highly sensitive to kanamycin. CONCLUSION RTE food sold by street vendors in Quetta was found to be contaminated with Salmonella spp. and poses a great health risk to consumers. As such, consumption should be avoided, and the health authorities should take stringent action to ensure the quality of street food in order to reduce the healthcare burden.
Collapse
Affiliation(s)
- Jannat Raza
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan; Department of Zoology, Sardar Bahadur Khan Women's University, Quetta, Pakistan
| | - Tauseef M Asmat
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan.
| | - Mohammad Zahid Mustafa
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Hina Ishtiaq
- Department of Biotechnology, Sardar Bahadur Khan Women's University, Quetta, Pakistan
| | - Kiran Mumtaz
- Department of Microbiology, University of Lahore, Lahore, Pakistan
| | - Muhammad Moazam Jalees
- Department of Microbiogy, Cholistan University of Veterinary and Animal Sciences, Bahwalpur, Pakistan
| | - Abdul Samad
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - ArsalanAhmed Shah
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Salma Khalid
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Habib Ur Rehman
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
7
|
Oscar T. Salmonella Prevalence Alone Is Not a Good Indicator of Poultry Food Safety. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:110-130. [PMID: 32691435 DOI: 10.1111/risa.13563] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Salmonella is a leading cause of foodborne illness (i.e., salmonellosis) outbreaks, which on occasion are attributed to ground turkey. The poultry industry uses Salmonella prevalence as an indicator of food safety. However, Salmonella prevalence is only one of several factors that determine risk of salmonellosis. Consequently, a model for predicting risk of salmonellosis from individual lots of ground turkey as a function of Salmonella prevalence and other risk factors was developed. Data for Salmonella contamination (prevalence, number, and serotype) of ground turkey were collected at meal preparation. Scenario analysis was used to evaluate effects of model variables on risk of salmonellosis. Epidemiological data were used to simulate Salmonella serotype virulence in a dose-response model that was based on human outbreak and feeding trial data. Salmonella prevalence was 26% (n = 100) per 25 g of ground turkey, whereas Salmonella number ranged from 0 to 1.603 with a median of 0.185 log per 25 g. Risk of salmonellosis (total arbitrary units (AU) per lot) was affected (p ≤ 0.05) by Salmonella prevalence, number, and virulence, by incidence and extent of undercooking, and by food consumption behavior and host resistance but was not (p > 0.05) affected by serving size, serving size distribution, or total bacterial load of ground turkey when all other risk factors were held constant. When other risk factors were not held constant, Salmonella prevalence was not correlated (r = -0.39; p = 0.21) with risk of salmonellosis. Thus, Salmonella prevalence alone was not a good indicator of poultry food safety because other factors were found to alter risk of salmonellosis. In conclusion, a more holistic approach to poultry food safety, such as the process risk model developed in the present study, is needed to better protect public health from foodborne pathogens like Salmonella.
Collapse
|