1
|
Çelebi Y, Kavrut E, Bulut M, Çetintaş Y, Tekin A, Hayaloğlu AA, Alwazeer D. Incorporation of hydrogen-producing magnesium into minced beef meat protects the quality attributes and safety of the product during cold storage. Food Chem 2024; 448:139185. [PMID: 38574715 DOI: 10.1016/j.foodchem.2024.139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.
Collapse
Affiliation(s)
- Yasemin Çelebi
- Department of Food Processing, Eşme Vocational School, Uşak University, Uşak 64600, Türkiye
| | - Enes Kavrut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76002 Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye.
| | - Ali Tekin
- Department of Food Technology, Vocational School of Keban, Firat University, 23700 Keban, Elazig, Türkiye; Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| |
Collapse
|
2
|
Zor M, Bulut M, Göksu Karagöz S, Çetintaş Y, Alwazeer D. Use of Hydrogen-Rich water in rice milk preparation improves the nutritional and sensory properties of product. Food Chem 2024; 437:137821. [PMID: 37913710 DOI: 10.1016/j.foodchem.2023.137821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The effect of using hydrogen-rich water (HRW) in the preparation of rice milk on the nutritional and sensorial properties was evaluated. The physicochemical parameters (pH, Eh7, titratable acidity), sensory properties (color), and minerals (ICP-MS), as well as amino acid (UPLC-ESI-MS/MS), sugar (HPLC-RID), and aroma (SPME-GC/MS) profiles, of four varieties of rice and their milk and waste were examined using Principal Component Analysis (PCA). Results showed that the profile of minerals, sugars, amino acids, and aroma was affected by the use of HRW. HRW-treated milk showed an increase in some essential minerals (Na, Mg, K, Ca, and Se) in some rice varieties. While HRW application enhanced the levels of desirable aroma compounds in milk but not the undesirable ones. This use of HRW allowed to increase in some essential amino acids (Ile, Leu, and Met) in HRW-treated rice milk samples.
Collapse
Affiliation(s)
- Melek Zor
- Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Ağrı İbrahim Çeçen University, 04000 Ağrı, Turkey.
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Iğdır University, 76000 Iğdır, Turkey; Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000 Igdır, Turkey; Innovative Food Technologies Development, Application and Research Center, Iğdır University, 76000 Igdır, Turkey
| | - Sermin Göksu Karagöz
- Centre for Innovative Technologies Research and Applications (YETEM), Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey.
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000 Igdır, Turkey; Innovative Food Technologies Development, Application and Research Center, Iğdır University, 76000 Igdır, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000 Iğdır, Turkey.
| |
Collapse
|
3
|
ALWAZEER D, ELNASANELKASIM MA, ÇİÇEK S, Engin T, Çiğdem A, Karaoğul E. Comparative Study of Phytochemical Extraction Using Hydrogen-Rich Water and Supercritical Fluid Extraction Methods. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Hydrogen-Rich Water Can Restrict the Formation of Biogenic Amines in Red Beet Pickles. FERMENTATION 2022. [DOI: 10.3390/fermentation8120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fermented foods are considered the main sources of biogenic amines (BAs) in the human diet while lactic acid bacteria (LAB) are the main producers of BAs. Normal water (NW) and hydrogen-rich water (HRW) were used for preparing red beet pickles, i.e., NWP and HRWP, respectively. The formation of BAs, i.e., aromatic amines (tyramine, 2-phenylethylamine), heterocyclic amines (histamine, tryptamine), and aliphatic di-amines (putrescine), was analyzed in both beet slices and brine of NWPs and HRWPs throughout the fermentation stages. Significant differences in redox value (Eh7) between NWP and HRWP brine samples were noticed during the first and last fermentation stages with lower values found for HRWPs. Total mesophilic aerobic bacteria (TMAB), yeast–mold, and LAB counts were higher for HRWPs than NWPs for all fermentation stages. Throughout fermentation stages, the levels of all BAs were lower in HRWPs than those of NWPs, and their levels in brines were higher than those of beets. At the end of fermentation, the levels (mg/kg) of BAs in NWPs and HRWPs were, respectively: tyramine, 72.76 and 61.74 (beet) and 113.49 and 92.67 (brine), 2-phenylethylamine, 48.00 and 40.00 (beet) and 58.01 and 50.19 (brine), histamine, 67.89 and 49.12 (beet) and 91.74 and 70.92 (brine), tryptamine, 93.14 and 77.23 (beet) and 119.00 and 93.11 (brine), putrescine, 81.11 and 63.56 (beet) and 106.75 and 85.93 (brine). Levels of BAs decreased by (%): 15.15 and 18.35 (tyramine), 16.67 and 13.44 (2-phenylethylamine), 27.65 and 22.7 (histamine), 17.09 and 21.76 (tryptamine), and 21.64 and 19.5 (putrescine) for beet and brine, respectively, when HRW was used in pickle preparation instead of NW. The results of this study suggest that the best method for limiting the formation of BAs in pickles is to use HRW in the fermentation phase then replace the fermentation medium with a new acidified and brined HRW followed by a pasteurization process.
Collapse
|
5
|
Abstract
The effects of washing raw butter with hydrogen-rich water (HRW), prepared with hydrogen (H2) and/or magnesium (Mg), on butter quality were investigated in this research paper. During the washing process, titratable acidity (TA) decreased by 12% for all washed samples. During the storage period, TA increased by 28% and 93% (control), 14% and 58% (H2), and 10% and 66% (Mg) for the 60th and 90th days, respectively. Peroxide value (mEq O2/kg) increased to 2.76 and 8.83 (control), 1.92 and 7.25 (H2), and 2.02 and 8.12 (Mg) for the 60th and 90th days. HRW samples showed the lowest acid degree value (ADV) and the highest color notes (L*, C*, and h). The HRW treatment of raw butter has shown improving effects on the product without any harmful residuals in the final product or the environment.
Collapse
|