1
|
Bucurica S, Lupanciuc M, Ionita-Radu F, Stefan I, Munteanu AE, Anghel D, Jinga M, Gaman EL. Estrobolome and Hepatocellular Adenomas-Connecting the Dots of the Gut Microbial β-Glucuronidase Pathway as a Metabolic Link. Int J Mol Sci 2023; 24:16034. [PMID: 38003224 PMCID: PMC10671049 DOI: 10.3390/ijms242216034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular adenomas are benign endothelial tumors of the liver, mostly associated with female individual users of estrogen-containing medications. However, the precise factors underlying the selective development of hepatic adenomas in certain females remain elusive. Additionally, the conventional profile of individuals prone to hepatic adenoma is changing. Notably, male patients exhibit a higher risk of malignant progression of hepatocellular adenomas, and there are instances where hepatic adenomas have no identifiable cause. In this paper, we theorize the role of the human gastrointestinal microbiota, specifically, of bacterial species producing β-glucuronidase enzymes, in the development of hepatic adenomas through the estrogen recycling pathway. Furthermore, we aim to address some of the existing gaps in our knowledge of pathophysiological pathways which are not yet subject to research or need to be studied further. As microbial β-glucuronidases proteins recycle estrogen and facilitate the conversion of inactive estrogen into its active form, this process results in elevated levels of unbound plasmatic estrogen, leading to extended exposure to estrogen. We suggest that an imbalance in the estrobolome could contribute to sex hormone disease evolution and, consequently, to the advancement of hepatocellular adenomas, which are estrogen related.
Collapse
Affiliation(s)
- Sandica Bucurica
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Mihaela Lupanciuc
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Florentina Ionita-Radu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Ion Stefan
- Department of Infectious Diseases, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
| | - Alice Elena Munteanu
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
- Department of Cardiology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Daniela Anghel
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
- Department of Internal Medicine, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Mariana Jinga
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Elena Laura Gaman
- Department of Biochemistry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| |
Collapse
|
2
|
Zhao B, Ye X, Yang Y, Wang Y, Wang R, Pan X, Wang M. Knockdown of ER-α36 expression inhibits glioma proliferation, invasion and epithelial-to-mesenchymal transition. Anat Rec (Hoboken) 2021; 305:321-332. [PMID: 34331393 DOI: 10.1002/ar.24723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Estrogen receptor-α36 (ER-α36), a subtype of the estrogen receptor, is reported to play roles in tumorigenesis and tamoxifen resistance in several tumors, especially breast cancer. However, the role of ER-α36 in glioma proliferation and invasion remains unknown. Here, we explored the function of ER-α36 in glioma cells, using U87 and U251 cell lines. We found that ER-α36 was upregulated in glioma tissues compared to adjacent nontumor tissues. In U87 and U251 glioma cell lines, inhibition of ER-α36 expression by shRNA suppressed cell proliferation and invasion. In addition, the expression of an epithelial marker, ZO-1, was upregulated while that of one mesenchymal marker, N-cadherin, was downregulated with ER-α36 knockdown. We also found that inhibition of ER-α36 inactivated both PI3K/AKT and MEK/ERK signals. Taken together, these data indicated that overexpression of ER-α36 is associated with glioma proliferation and progression but that inhibition of ER-α36 leads to suppressed invasion and the epithelial-to-mesenchymal transition via PI3K/AKT and MEK/ERK pathway inactivation in glioma cells.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xiang Ye
- Department of Neurology, Cadre Clinic, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanyuan Yang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China.,Prenatal Diagnosis Center, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Yuxing Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China.,Prenatal Diagnosis Center, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Ru Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China.,Prenatal Diagnosis Center, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Xiaohua Pan
- Department of Breast and Thyroid surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Molin Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China.,Prenatal Diagnosis Center, Jinan Maternity and Child Care Hospital, Jinan, China
| |
Collapse
|
3
|
Fu Z, Wang X, Wang Z, Liu L. Estrogen receptor-α36-mediated rapid estrogen signaling regulates 78 kDa glucose-regulated protein expression in gastric carcinoma cells. Oncol Lett 2018; 15:10031-10036. [PMID: 29805694 DOI: 10.3892/ol.2018.8542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/18/2017] [Indexed: 11/05/2022] Open
Abstract
To determine whether estrogen receptor-α36 (ER-α36) -mediated rapid estrogen signaling is associated with 78 kDa glucose-regulated protein (GRP78) expression in gastric cancer, 86 samples of gastric tumor tissue with corresponding normal and tumor-adjacent tissues were used to examine expression patterns of GRP78 and ER-α36. Immunohistochemistry demonstrated that 55/86 (63.95%) patients with gastric carcinoma, and western blot analysis revealed that GRP78 was upregulated in 15/20 (75%) of tumor specimens. GRP78 expression was positively associated with ER-α36 expression, the male sex and lymph node metastasis (P<0.05). Estrogen treatment increased GRP78 and ER-α36 expression, as well as GSK-3β phosphorylation in established gastric cancer SGC-7901 cells. The steady-state level of GRP78 protein expression and the level of phosphorylated GSK-3β at Ser9 were decreased in SGC-7901 cells with ER-α36 knockdown. Forced expression of ER-α36 in SGC-7901 cells, however, led to an increase in GRP78 expression and GSK-3β phosphorylation. It may therefore be concluded that ER-α36-mediated rapid estrogen signaling positively regulates GRP78 expression, presumably via the GSK-3β pathway, which may be associated with gastric carcinogenesis.
Collapse
Affiliation(s)
- Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China.,Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhaoyi Wang
- Shenogen Pharma Group, Beijing 102206, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China.,Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
4
|
Weinhouse C, Bergin IL, Harris C, Dolinoy DC. Stat3 is a candidate epigenetic biomarker of perinatal Bisphenol A exposure associated with murine hepatic tumors with implications for human health. Epigenetics 2016; 10:1099-110. [PMID: 26542749 DOI: 10.1080/15592294.2015.1107694] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that has been implicated as a potential carcinogen and epigenotoxicant. We have previously reported dose-dependent incidence of hepatic tumors in 10-month-old isogenic mice perinatally exposed to BPA. Here, we evaluated DNA methylation at 3 candidate genes (Esr1, Il-6st, and Stat3) in liver tissue of BPA-exposed mice euthanized at 2 time points: post-natal day 22 (PND22; n = 147) or 10-months of age (n = 78, including n = 18 with hepatic tumors). Additionally, DNA methylation profiles were analyzed at human homologs of murine candidate genes in human fetal liver samples (n = 50) with known liver tissue BPA levels. Candidate genes were chosen based on reported expression changes in both rodent and human hepatocellular carcinoma (HCC). Regions for bisulfite sequencing were chosen by mining whole genome next generation sequencing methylation datasets of both mice and human liver samples with known perinatal BPA exposures. One of 3 candidate genes, Stat3, displayed dose-dependent DNA methylation changes in both 10-month mice with liver tumors as compared to those without liver tumors and 3-week sibling mice from the same exposure study, implicating Stat3 as a potential epigenetic biomarker of both early life BPA exposure and adult disease in mice. DNA methylation profiles within STAT3 varied with liver tissue BPA level in human fetal liver samples as well, suggesting STAT3 may be a translationally relevant candidate biomarker. These data implicate Stat3 as a potential early life biomarker of adult murine liver tumor risk following early BPA exposure with early evidence of relevance to human health.
Collapse
Affiliation(s)
- Caren Weinhouse
- a Department of Environmental Health Sciences ; University of Michigan ; Ann Arbor , Michigan , USA
| | - Ingrid L Bergin
- b Unit for Laboratory Animal Medicine; University of Michigan ; Ann Arbor , Michigan , USA
| | - Craig Harris
- a Department of Environmental Health Sciences ; University of Michigan ; Ann Arbor , Michigan , USA
| | - Dana C Dolinoy
- a Department of Environmental Health Sciences ; University of Michigan ; Ann Arbor , Michigan , USA.,c Department of Nutritional Sciences ; University of Michigan ; Ann Arbor , Michigan , USA
| |
Collapse
|
5
|
Sołtysik K, Czekaj P. ERα36--Another piece of the estrogen puzzle. Eur J Cell Biol 2015; 94:611-25. [PMID: 26522827 DOI: 10.1016/j.ejcb.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although the nuclear action of estrogen receptors (ER) is a well-known fact, evidence supporting membrane estrogen receptors is steadily accumulating. New ER variants of unrecognized function have been discovered. ERα is a product of the ESR1 gene. It serves not only as a template for the full-length 66kDa protein, but also for smaller isoforms which exist as independent receptors. The recently discovered ERα36 (36kDa), consisting of 310 amino acids of total 595 ERα66 protein residues, is an example of that group. The transcription initiation site is identified in the first intron of the ESR1 gene. C-Terminal 27 amino acids are encoded by previously unknown exon 9. The presence of this unique C-terminal sequence creates an opportunity for the production of selective antibodies. ERα36 has been shown to have a high affinity to the cell membrane and as much as 90% of the protein can be bound with it. Post-translational palmitoylation is suspected to play a crucial role in ERα36 anchoring to the cell membrane. In silico analysis suggests the existence of a potential transmembrane domain in ERα36. ERα36 was found in most cells of animals at various ages, but its exact physiological function remains to be fully elucidated. It seems that cells traditionally considered as being deprived of ER are able to respond to hormonal stimulation via the ERα36 receptor. Moreover, ERα36 displays unique pharmacological properties and its action may be behind antiestrogen resistance. The use of ERα36 in cancer diagnosis gives rise to great expectations.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Students Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
6
|
Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, Sone H, Vadgama P, Wagemaker G, Ward A, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis 2015; 36 Suppl 1:S38-60. [PMID: 26106143 DOI: 10.1093/carcin/bgv030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
Collapse
Affiliation(s)
- Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden,
| | - Philippa Darbre
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Staffan Eriksson
- Department of Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 575, 75123 Uppsala, Sweden
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, PO Box 913, Dunedin 9050, New Zealand
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Michalis V Karamouzis
- Department of Biological Chemistry Medical School, Institute of Molecular Medicine and Biomedical Research, University of Athens, Marasli 3, Kolonaki, Athens 10676, Greece
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University Bloomington , 1025 E. 7th Street, Suite 111, Bloomington, IN 47405, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir F.G. Banting Driveway, AL # 2202C, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Hideko Sone
- Environmental Exposure Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Pankaj Vadgama
- IRC in Biomedical Materials, School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatoty Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Dept. kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - Dustin G Brown
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Ji C. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage. Biomolecules 2015; 5:1099-121. [PMID: 26047032 PMCID: PMC4496712 DOI: 10.3390/biom5021099] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.
Collapse
Affiliation(s)
- Cheng Ji
- GI/Liver Division, Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
8
|
Abstract
Traditionally, steroid hormones such as the vitamin D3 metabolites, testosterone and dihydrotesterone, and 17β-estradiol act through cytosolic and nuclear receptors that directly interact with DNA to alter gene transcription and regulate cellular development. However, recent studies focused on rapid and membrane effects of steroid hormones have given invaluable insight into their non-classical mechanisms of action. In some cases, the traditional receptors were implicated as acting also in the plasma membrane as membrane-associated receptors. However, recent data have demonstrated the presence of an alternative splicing variant to traditional estrogen receptor α known as ERα36, which is present in the plasma membranes of several different cell types including several cancer cell types and even in some normal cells including cartilage and bone cells. The physiological effects that result from the membrane activation of ERα36 may vary from one cell type to another, but the mechanism of action appears to use similar pathways such as the activation of various protein kinases and phospholipases leading to the activation of signaling cascades that result in rapid, non-genomic responses. These rapid responses can affect cell proliferation and apoptotic signaling, indirectly activate downstream genomic signaling through phosphorylation cascades of transcription factors, and crosstalk with classical pathways via interaction with classical receptors. This review describes the data from the last several years and discusses the non-classical, rapid, and membrane-associated cellular responses to steroid hormones, particularly 17β-estradiol, through the classical receptors ERα and ERβ and various non-classical receptors, especially estrogen receptor-α36 (ERα36).
Collapse
Affiliation(s)
- Reyhaan A Chaudhri
- School of Biology, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; Atlanta Clinical and Translational Science Institute, Emory University, 1440 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Tchernichovsky 59, Kfar Saba 44299, Israel
| | - Khairat Elbaradie
- School of Biology, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; Department of Zoology, Tanta University, 69 Tout Ankh Amoon St, Tanta 31111, Egypt
| | - Zvi Schwartz
- School of Engineering, Virginia Commonwealth University, 601 West Main Street, Suite 331, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MSC 7894, San Antonio, TX 78229, USA
| | - Barbara D Boyan
- School of Biology, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; School of Engineering, Virginia Commonwealth University, 601 West Main Street, Suite 331, Richmond, VA 23284, USA.
| |
Collapse
|
9
|
New Insights into the Pathogenesis of Alcohol-Induced ER Stress and Liver Diseases. Int J Hepatol 2014; 2014:513787. [PMID: 24868470 PMCID: PMC4020372 DOI: 10.1155/2014/513787] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol-induced liver disease increasingly contributes to human mortality worldwide. Alcohol-induced endoplasmic reticulum (ER) stress and disruption of cellular protein homeostasis have recently been established as a significant mechanism contributing to liver diseases. The alcohol-induced ER stress occurs not only in cultured hepatocytes but also in vivo in the livers of several species including mouse, rat, minipigs, zebrafish, and humans. Identified causes for the ER stress include acetaldehyde, oxidative stress, impaired one carbon metabolism, toxic lipid species, insulin resistance, disrupted calcium homeostasis, and aberrant epigenetic modifications. Importance of each of the causes in alcohol-induced liver injury depends on doses, duration and patterns of alcohol exposure, genetic disposition, environmental factors, cross-talks with other pathogenic pathways, and stages of liver disease. The ER stress may occur more or less all the time during alcohol consumption, which interferes with hepatic protein homeostasis, proliferation, and cell cycle progression promoting development of advanced liver diseases. Emerging evidence indicates that long-term alcohol consumption and ER stress may directly be involved in hepatocellular carcinogenesis (HCC). Dissecting ER stress signaling pathways leading to tumorigenesis will uncover potential therapeutic targets for intervention and treatment of human alcoholics with liver cancer.
Collapse
|
10
|
Han H, Hu J, Lau MY, Feng M, Petrovic LM, Ji C. Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors. Front Genet 2013; 4:224. [PMID: 24198826 PMCID: PMC3813967 DOI: 10.3389/fgene.2013.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/15/2013] [Indexed: 12/26/2022] Open
Abstract
Mortality from liver cancer in humans is increasingly attributable to heavy or long-term alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum (ER) stress response in liver cancer development was investigated using an animal model with a liver knockout (KO) of the chaperone BiP and under constitutive hepatic ER stress. Long-term alcohol and high fat diet feeding resulted in higher levels of serum alanine aminotransferase, impaired ER stress response, and higher incidence of liver tumor in older (aged 16 months) KO females than in either middle-aged (6 months) KOs or older (aged 16 months) wild type females. In the older KO females, stronger effects of the alcohol on methylation of CpG islands at promoter regions of genes involved in the ER-associated degradation (ERAD) were also detected. Altered expression of ERAD factors including derlin 3, Creld2 (cysteine-rich with epidermal growth factor-like domains 2), Herpud1 (homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member), Wfs1 (Wolfram syndrome gene), and Yod1 (deubiquitinating enzyme 1) was co-present with decreased proteasome activities, increased estrogen receptor α variant (ERα36), and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) and STAT3 (the signal transducers and activators of transcription) in the older KO female fed alcohol. Our results suggest that long-term alcohol consumption and aging may promote liver tumorigenesis in females through interfering with DNA methylation and expression of genes involved in the ERAD.
Collapse
Affiliation(s)
- Hui Han
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|