1
|
Nachmany I, Nevo S, Edelheit S, Sarusi-Portuguez A, Friedlander G, Salame TM, Pavlov V, Yakubovsky O, Pencovich N. Myeloid derived suppressor cells mediate hepatocyte proliferation and immune suppression during liver regeneration following resection. Genes Immun 2024; 25:483-491. [PMID: 39488626 DOI: 10.1038/s41435-024-00303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Liver regeneration following resection is a complex process relying on coordinated pathways and cell types in the remnant organ. Myeloid-Derived Suppressor Cells (MDSCs) have a role in liver regeneration-related angiogenesis but other roles they may play in this process remain to be elucidated. In this study, we sought to examine the effect of G-MDSCs on hepatocytes proliferation and immune modulation during liver regeneration. Global gene expression profiling of regenerating hepatocytes in mice with CD11b+Ly6G+ MDSCs (G-MDSCs) depletion revealed disrupted transcriptional progression from day one to day two after major liver resection. Key genes and pathways related to hepatocyte proliferation and immune response were differentially expressed upon MDSC depletion. Hepatocytes cellularity increased when co-cultured with G-MDSCs, or treated with amphiregulin, which G-MDSCs upregulate during regeneration. Cytometry by time-of-flight (CyTOF) analysis of the intra-liver immune milieu upon MDSC depletion during regeneration demonstrated increased natural killer cell proportions, alongside changes in other immune cell populations. Taken together, these results provide evidence that MDSCs contribute to early liver regeneration by promoting hepatocyte proliferation and modulating the intra-liver immune response, and illuminate the multifaceted role of MDSCs in liver regeneration.
Collapse
Affiliation(s)
- Ido Nachmany
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shir Nevo
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarit Edelheit
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avital Sarusi-Portuguez
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Vera Pavlov
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Oran Yakubovsky
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Niv Pencovich
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Wu D, van de Graaf SFJ. Maladaptive regeneration and metabolic dysfunction associated steatotic liver disease: Common mechanisms and potential therapeutic targets. Biochem Pharmacol 2024; 227:116437. [PMID: 39025410 DOI: 10.1016/j.bcp.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/β-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.
Collapse
Affiliation(s)
- Dandan Wu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands.
| |
Collapse
|
3
|
Rosenthal BE, Bittermann T. Sarcopenic obesity: A new predictor of recipient liver regeneration after living donor liver transplantation? Liver Transpl 2024; 30:345-346. [PMID: 37773049 DOI: 10.1097/lvt.0000000000000263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Benjamin E Rosenthal
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Therese Bittermann
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Zhu JH, Guan XC, Yi LL, Xu H, Li QY, Cheng WJ, Xie YX, Li WZ, Zhao HY, Wei HJ, Zhao SM. Single-nucleus transcriptome sequencing reveals hepatic cell atlas in pigs. BMC Genomics 2023; 24:770. [PMID: 38087243 PMCID: PMC10717992 DOI: 10.1186/s12864-023-09765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. RESULTS The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. CONCLUSIONS In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.
Collapse
Affiliation(s)
- Jun-Hong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan-Cheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Lan-Lan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Xu
- School of Public Finance and Economics, Yunnan University of Finance and Economics, Kunming, 650221, China
| | - Qiu-Yan Li
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen-Jie Cheng
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yu-Xiao Xie
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, 563006, China
| | - Wei-Zhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Su-Mei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
5
|
Gong J, Cong M, Wu H, Wang M, Bai H, Wang J, Que K, Zheng K, Zhang W, Yang X, Gong J, Shi H, Miao M, Yuan F. P53/miR-34a/SIRT1 positive feedback loop regulates the termination of liver regeneration. Aging (Albany NY) 2023; 15:1859-1877. [PMID: 36988541 PMCID: PMC10085612 DOI: 10.18632/aging.203920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/01/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND The capacity of the liver to restore its architecture and function assures good prognoses of patients who suffer serious hepatic injury, cancer resection, or living donor liver transplantation. Only a few studies have shed light on the mechanisms involved in the termination stage of LR. Here, we attempt to further verify the role of the p53/miR-34a/SIRT1 positive feedback loop in the termination of liver regeneration and its possible relationship with liver cancer. METHOD We performed partial hepatectomy (PH) in mice transfected with adenovirus (Ade) overexpressing P53 and adenovirus-associated virus (AAV) overexpressing miR-34a. LR was analyzed by liver weight/body weight, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and cell proliferation, and the related cellular signals were investigated. Bile acid (BA) levels during LR were analyzed by metabolomics of bile acids. RESULTS We found that the P53/miR-34a/SIRT1 positive feedback loop was activated in the late phase of LR. Overexpression of P53 or miR-34a terminated LR early and enhanced P53/miR-34a/SIRT1 positive feedback loop expression and its proapoptotic effect. T-β-MCA increased gradually during LR and peaked at 7 days after PH. T-β-MCA inhibited cell proliferation and promoted cell apoptosis via facilitating the P53/miR-34a/SIRT1 positive feedback loop during LR by suppressing FXR/SHP. The P53/miR-34a/SIRT1 positive feedback loop was abolished in HCC patients with P53 mutations. CONCLUSIONS The P53/miR-34a/SIRT1 positive feedback loop plays an important role in the termination of LR. Our findings showed the molecular and metabolic mechanisms of LR termination and provide a potential therapeutic alternative for treating P53-wild-type HCC patients.
Collapse
Affiliation(s)
- Junhua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Minghua Cong
- Comprehensive Oncology Department, National Cancer Center/National Clinical Research Center for Cancer/Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer hospital, Beijing 100021, Beijing, China
| | - Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Menghao Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - He Bai
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Lianhu, Xi’an 710000, Shaanxi Province, China
| | - Jingyuan Wang
- Department of Orthopaetics, Dianjiang People’s Hospital of Chongqing, Chongqing 408300, Chongqing, China
| | - Keting Que
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Kaiwen Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Xiaoli Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Mingyong Miao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Fangchao Yuan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
6
|
YAN X, Shi JH, Xue JF, Guo WZ, Li B, Zhang SJ. PD-1/PD-L1 inhibition promotes hepatic regeneration in small-for-size liver following extended hepatectomy. Cytokine 2022; 159:156017. [DOI: 10.1016/j.cyto.2022.156017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
|
7
|
Liver regeneration after partial hepatectomy is improved in the absence of aryl hydrocarbon receptor. Sci Rep 2022; 12:15446. [PMID: 36104446 PMCID: PMC9474532 DOI: 10.1038/s41598-022-19733-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
The liver is among the few organs having the ability to self-regenerate in response to a severe damage compromising its functionality. The Aryl hydrocarbon receptor (Ahr) is a transcription factor relevant for the detoxification of xenobiotics but also largely important for liver development and homeostasis. Hence, liver cell differentiation is developmentally modulated by Ahr through the controlled expression of pluripotency and stemness-inducing genes. Here, 2/3 partial hepatectomy (PH) was used as a clinically relevant approach to induce liver regeneration in Ahr-expressing (Ahr+/+) and Ahr-null (Ahr−/−) mice. Ahr expression and activity were early induced after 2/3 PH to be gradually downmodulated latter during regeneration. Ahr−/− mice triggered liver regeneration much faster than AhR+/+ animals, although both reached full regeneration at the latest times. At initial stages after PHx, earlier regenerating Ahr−/− livers had upregulation of cell proliferation markers and increased activation of signalling pathways related to stemness such as Hippo-YAP and Wnt/β-catenin, concomitantly with the induction of pro-inflammatory cytokines TNFa, IL6 and p65. These phenotypes, together with the improved metabolic adaptation of Ahr−/− mice after PHx and their induced sustained cell proliferation, could likely result from the expansion of undifferentiated stem cells residing in the liver expressing OCT4, SOX2, KLF4 and NANOG. We propose that Ahr needs to be induced early during regeneration to fine-tune liver regrowth to physiological values. Since Ahr deficiency did not result in liver overgrowth, its transient pharmacological inhibition could serve to improve liver regeneration in hepatectomized and transplanted patients and in those exposed to damaging liver toxins and carcinogens.
Collapse
|
8
|
Lei X, Dai X, Wang Q, Long R, Xiang Z, Li H, Long Z, Zhang C, Zhu Z. RNA-seq transcriptome profiling of liver regeneration in mice identifies the miR-34b-5p/phosphoinositide-dependent protein kinase 1 axis as a potential target for hepatocyte proliferation. Biochem Biophys Res Commun 2022; 627:111-121. [PMID: 36030652 DOI: 10.1016/j.bbrc.2022.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Characterized by compensatory hyperplasia dependent on hepatocyte proliferation, the liver will initiate regeneration after partial hepatectomy (PH) and acute or chronic injuries. A variety of genes and noncoding RNAs play pivotal roles in these cell proliferation and growth processes. However, it is still unclear how competition endogenous RNAs (ceRNAs) modulate cellular activities during each phase of liver regeneration, and the specific mechanisms of posttranscriptional gene expression regulation in hepatocyte proliferation remain to be elucidated. To investigate the mechanism of liver regeneration through RNA-seq profiling and to determine the role of miR-34b-5p/PDK1 on hepatocyte proliferation, we established a 2/3 PH mouse model for whole transcriptome profiling based on high-throughput sequencing techniques. We subsequently constructed a lncRNA-miRNA-mRNA ceRNA regulatory network through integrative analyses of RNA interactions. Finally, plasmid transfection in NCTC 1469 cells, dual luciferase reporter gene assay, quantitative real-time PCR, western blotting, Cell Counting Kit-8, and EdU-DNA synthesis cell proliferation assay were used to demonstrate the role of the miR-34b-5p/PDK1 axis in hepatocyte proliferation in vitro. A total of 1443 mRNAs (962 up, 481 down), 48 miRNAs (35 up, 13 down), and 1955 lncRNAs (986 up, 969 down) were identified as significantly differentially expressed. We then successfully constructed a ceRNA regulatory network consisting of 7 lncRNAs, 15 miRNAs, and 347 mRNAs based on the predicted inverse interactions among ceRNAs. Additionally, miR-34b-5p/PDK1 was predicted to be closely related to hepatocyte proliferation. We further demonstrated that miR-34b-5p could bind specifically to the 3'-untranslated region (3'-UTR) of PDK1 using the dual luciferase reporter assay. Ectopic overexpression of miR-34b-5p significantly reduced the mRNA and protein expression of PDK1, while it markedly inhibited the proliferation of mouse NCTC 1469 cells in vitro. In contrast, knocking down miR-34b-5p exhibited the inverse effects on PDK1 expression and hepatocyte proliferation. Through analyzing the ceRNA network during mouse liver regeneration, this study reveals that miR-34b-5p can inhibit hepatocyte proliferation through negatively regulating PDK1 and may be a potential pharmacological intervention target.
Collapse
Affiliation(s)
- Xiaohua Lei
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Wang
- The First Affiliated Hospital, Department of Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ruchang Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiqiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huajian Li
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao Zhang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China; The First Affiliated Hospital, Department of Education and Training, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
9
|
Lv X, Chen J, He J, Hou L, Ren Y, Shen X, Wang Y, Ji T, Cai X. Gasdermin D-mediated pyroptosis suppresses liver regeneration after 70% partial hepatectomy. Hepatol Commun 2022; 6:2340-2353. [PMID: 35509206 PMCID: PMC9426395 DOI: 10.1002/hep4.1973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/26/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pyroptosis is a kind of programmed cell death primarily mediated by gasdermin D (GSDMD) and shown to regulate multiple diseases. However, its contribution to liver regeneration, a fine‐tuned tissue repair process mediated primarily by hepatocytes after mass loss, remains unclear. Herein, we found that caspase‐11/GSDMD‐mediated pyroptosis was activated in regenerating liver after 70% partial hepatectomy. Impeding pyroptosis by deleting GSDMD significantly reduced liver injury and accelerated liver regeneration. Mechanistically, GSDMD deficiency up‐regulates the activation of hepatocyte growth factor/c‐Met and epidermal growth factor receptor mitogenic pathways at the initiation phase. Moreover, activin A and glypican 3 (GPC3), two terminators of liver regeneration, were inhibited when GSDMD was absent. In vitro study suggested the expressions of activin A and GPC3 were induced by interleukin (IL)–1β and IL‐18, whose maturations were regulated by GSDMD‐mediated pyroptosis. Similarly, pharmacologically inhibiting GSDMD recapitulates these phenomena. Conclusion: This study characterizes the role of GSDMD‐mediated pyroptosis in liver regeneration and lays the foundation for enhancing liver restoration by targeting GSDMD in liver patients with impaired regenerative capacity.
Collapse
Affiliation(s)
- Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Jiayan He
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Lidan Hou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Yiyue Ren
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Xiaoyun Shen
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| |
Collapse
|
10
|
Xie C, Zhang Z, Yang M, Cao C, Zhou Y, Zhu Z, Gong W, Xu C, Yan L, Hu Z, Ai L, Peng Y. Lactiplantibacillus plantarum AR113 Exhibit Accelerated Liver Regeneration by Regulating Gut Microbiota and Plasma Glycerophospholipid. Front Microbiol 2022; 12:800470. [PMID: 35154031 PMCID: PMC8834300 DOI: 10.3389/fmicb.2021.800470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that probiotics have been proved to influence liver injury and regeneration. In the present study, the effects of Lactiplantibacillus plantarum AR113 on the liver regeneration were investigated in 70% partial hepatectomy (PHx) rats. Sprague-Dawley (SD) rats were gavaged with L. plantarum AR113 suspensions (1 × 1010 CFU/mL) both before and after partial hepatectomy. The results showed that L. plantarum AR113 administration 2 weeks before partial hepatectomy can accelerate liver regeneration by increased hepatocyte proliferation and tumor necrosis factor-α (TNF-α), hepatocyte growth factor (HGF), and transforming growth factor-β (TGF-β) expression. Probiotic administration enriched Lactobacillus and Bacteroides and depleted Flavonifractor and Acetatifactor in the gut microbiome. Meanwhile, L. plantarum AR113 showed decline of phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidyl serine (PS), and lysophosphatidyl choline (LysoPC) levels in the serum of the rats after the L. plantarum AR113 administration. Moreover, L. plantarum AR113 treated rats exhibited higher concentrations of L-leucine, L-isoleucine, mevalonic acid, and lower 7-oxo-8-amino-nonanoic acid in plasma than that in PHx. Spearman correlation analysis revealed a significant correlation between changes in gut microbiota composition and glycerophospholipid. These results indicate that L. plantarum AR113 is promising for accelerating liver regeneration and provide new insights regarding the correlations among the microbiome, the metabolome, and liver regeneration.
Collapse
Affiliation(s)
- Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhoumei Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Cha Cao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yingjun Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chao Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhenxiu Hu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Lianzhong Ai,
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Yuande Peng,
| |
Collapse
|
11
|
Yu S, Cui Z, Zhou J, Wang K, Li Q, Sun H, Hu Z. LINC00265 maintains hepatocyte proliferation during liver regeneration by targeting miRNA-28-5p. Biosci Biotechnol Biochem 2021; 85:528-536. [PMID: 33624782 DOI: 10.1093/bbb/zbaa049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs have been implicated in many biological processes, but their roles in liver regeneration still need to be illustrated. Therefore, we aimed to investigate the role of LINC00265 as a pivotal regulator of hepatocyte proliferation during liver regeneration. It was found that LINC00265 is significantly upregulated in rat liver tissues at various time points after 2/3 liver resection. LINC00265 knockdown inhibited hepatocyte proliferation, induced cell apoptosis and led to G2/M phase cell cycle arrestment. In rats subjected to surgery, LINC00265 knockdown decreased liver/body weight ratio, attenuated improvement from liver damage and reduced Ki67 and PCNA expression. Luciferase reporter assays confirmed that miR-28-5p was a direct target of LINC00265, and inhibition of miR-28-5p abolished the effect of LINC00265 knockdown. In summary, LINC00265 might maintain hepatocyte proliferation by targeting miR-28-5p during liver regeneration and should be considered as a promising therapeutic option for hepatocyte regeneration after liver resection.
Collapse
Affiliation(s)
- Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhonglin Cui
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Sun
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhigang Hu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Zhang W, Wang L, Sun XH, Liu X, Xiao Y, Zhang J, Wang T, Chen H, Zhan YQ, Yu M, Ge CH, Li CY, Ren GM, Yin RH, Yang XM. Toll-like receptor 5-mediated signaling enhances liver regeneration in mice. Mil Med Res 2021; 8:16. [PMID: 33622404 PMCID: PMC7901072 DOI: 10.1186/s40779-021-00309-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Toll-like receptor 5 (TLR5)-mediated pathways play critical roles in regulating the hepatic immune response and show hepatoprotective effects in mouse models of hepatic diseases. However, the role of TLR5 in experimental models of liver regeneration has not been reported. This study aimed to investigate the role of TLR5 in partial hepatectomy (PHx)-induced liver regeneration. METHODS We performed 2/3 PHx in wild-type (WT) mice, TLR5 knockout mice, or TLR5 agonist CBLB502 treated mice, as a model of liver regeneration. Bacterial flagellin content was measured with ELISA, and hepatic TLR5 expression was determined with quantitative PCR analyses and flow cytometry. To study the effects of TLR5 on hepatocyte proliferation, we analyzed bromodeoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression with immunohistochemistry (IHC) staining. The effects of TLR5 during the priming phase of liver regeneration were examined with quantitative PCR analyses of immediate early gene mRNA levels, and with Western blotting analysis of hepatic NF-κB and STAT3 activation. Cytokine and growth factor production after PHx were detected with real-time PCR and cytometric bead array (CBA) assays. Oil Red O staining and hepatic lipid concentrations were analyzed to examine the effect of TLR5 on hepatic lipid accumulation after PHx. RESULTS The bacterial flagellin content in the serum and liver increased, and the hepatic TLR5 expression was significantly up-regulated in WT mice after PHx. TLR5-deficient mice exhibited diminished numbers of BrdU- and PCNA-positive cells, suppressed immediate early gene expression, and decreased cytokine and growth factor production. Moreover, PHx-induced hepatic NF-κB and STAT3 activation was inhibited in Tlr5-/- mice, as compared with WT mice. Consistently, the administration of CBLB502 significantly promoted PHx-mediated hepatocyte proliferation, which was correlated with enhanced production of proinflammatory cytokines and the recruitment of macrophages and neutrophils in the liver. Furthermore, Tlr5-/- mice displayed significantly lower hepatic lipid concentrations and smaller Oil Red O positive areas than those in control mice after PHx. CONCLUSION We reveal that TLR5 activation contributes to the initial events of liver regeneration after PHx. Our findings demonstrate that TLR5 signaling positively regulates liver regeneration and suggest the potential of TLR5 agonist to promote liver regeneration.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xue-Hua Sun
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yang Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jie Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ting Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Xiao-Ming Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
13
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
14
|
Van Raemdonck D. Commentary: Is less really more? J Thorac Cardiovasc Surg 2020; 162:1425-1427. [PMID: 32919768 DOI: 10.1016/j.jtcvs.2020.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Zhang F, Wang F, Liang B, Li Z, Shao J, Zhang Z, Wang S, Zheng S. Liver regeneration in traditional Chinese medicine: advances and challenges. Regen Med Res 2020; 8:1. [PMID: 31939733 PMCID: PMC6961567 DOI: 10.1051/rmr/190003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/10/2019] [Indexed: 11/14/2022] Open
Abstract
Liver diseases pose a serious problem for national health care system all over the world. Liver regeneration has profound impacts on the occurrence and development of various liver diseases, and it remains an extensively studied topic. Although current knowledge has suggested two major mechanisms for liver regeneration, including compensatory hyperplasia of hepatocytes and stem or progenitor cell-mediated regeneration, the complexity of this physiopathological process determines that its effective regulation cannot be achieved by single-target or single-component approaches. Alternatively, using traditional Chinese medicine (TCM) to regulate liver regeneration is an important strategy for prevention and treatment of liver disorder and the related diseases. From the perspectives of TCM, liver regeneration can be caused by the disrupted balance between hepatic damage and regenerative capacity, and the "marrow"-based approaches have important therapeutic implications for liver regeneration. These two points have been massively supported by a number of basic studies and clinical observations during recent decades. TCM has the advantages of overall dynamic fine-tuning and early adjustment, and has exhibited enormous therapeutic benefits for various liver diseases. Here, we review the recent advances in the understanding of liver regeneration in TCM system in the hope of facilitating the application of TCM for liver diseases via regulation of liver regeneration.
Collapse
Affiliation(s)
- Feng Zhang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Feixia Wang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Baoyu Liang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Zhanghao Li
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Jiangjuan Shao
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Zili Zhang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Shijun Wang
-
Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 PR China
| | - Shizhong Zheng
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| |
Collapse
|