1
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
3
|
Park IG, Yoon SJ, Won SM, Oh KK, Hyun JY, Suk KT, Lee U. Gut microbiota-based machine-learning signature for the diagnosis of alcohol-associated and metabolic dysfunction-associated steatotic liver disease. Sci Rep 2024; 14:16122. [PMID: 38997279 PMCID: PMC11245548 DOI: 10.1038/s41598-024-60768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 07/14/2024] Open
Abstract
Alcoholic-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD) show a high prevalence rate worldwide. As gut microbiota represents current state of ALD and MASLD via gut-liver axis, typical characteristics of gut microbiota can be used as a potential diagnostic marker in ALD and MASLD. Machine learning (ML) algorithms improve diagnostic performance in various diseases. Using gut microbiota-based ML algorithms, we evaluated the diagnostic index for ALD and MASLD. Fecal 16S rRNA sequencing data of 263 ALD (control, elevated liver enzyme [ELE], cirrhosis, and hepatocellular carcinoma [HCC]) and 201 MASLD (control and ELE) subjects were collected. For external validation, 126 ALD and 84 MASLD subjects were recruited. Four supervised ML algorithms (support vector machine, random forest, multilevel perceptron, and convolutional neural network) were used for classification with 20, 40, 60, and 80 features, in which three nonsupervised ML algorithms (independent component analysis, principal component analysis, linear discriminant analysis, and random projection) were used for feature reduction. A total of 52 combinations of ML algorithms for each pair of subgroups were performed with 60 hyperparameter variations and Stratified ShuffleSplit tenfold cross validation. The ML models of the convolutional neural network combined with principal component analysis achieved areas under the receiver operating characteristic curve (AUCs) > 0.90. In ALD, the diagnostic AUC values of the ML strategy (vs. control) were 0.94, 0.97, and 0.96 for ELE, cirrhosis, and liver cancer, respectively. The AUC value (vs. control) for MASLD (ELE) was 0.93. In the external validation, the AUC values of ALD and MASLD (vs control) were > 0.90 and 0.88, respectively. The gut microbiota-based ML strategy can be used for the diagnosis of ALD and MASLD.ClinicalTrials.gov NCT04339725.
Collapse
Affiliation(s)
- In-Gyu Park
- Department of Electrical Engineering, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ji Ye Hyun
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea.
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea.
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
5
|
Allaume P, Rabilloud N, Turlin B, Bardou-Jacquet E, Loréal O, Calderaro J, Khene ZE, Acosta O, De Crevoisier R, Rioux-Leclercq N, Pecot T, Kammerer-Jacquet SF. Artificial Intelligence-Based Opportunities in Liver Pathology-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13101799. [PMID: 37238283 DOI: 10.3390/diagnostics13101799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Artificial Intelligence (AI)-based Deep Neural Networks (DNNs) can handle a wide range of applications in image analysis, ranging from automated segmentation to diagnostic and prediction. As such, they have revolutionized healthcare, including in the liver pathology field. OBJECTIVE The present study aims to provide a systematic review of applications and performances provided by DNN algorithms in liver pathology throughout the Pubmed and Embase databases up to December 2022, for tumoral, metabolic and inflammatory fields. RESULTS 42 articles were selected and fully reviewed. Each article was evaluated through the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, highlighting their risks of bias. CONCLUSIONS DNN-based models are well represented in the field of liver pathology, and their applications are diverse. Most studies, however, presented at least one domain with a high risk of bias according to the QUADAS-2 tool. Hence, DNN models in liver pathology present future opportunities and persistent limitations. To our knowledge, this review is the first one solely focused on DNN-based applications in liver pathology, and to evaluate their bias through the lens of the QUADAS2 tool.
Collapse
Affiliation(s)
- Pierre Allaume
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Noémie Rabilloud
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Bruno Turlin
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Edouard Bardou-Jacquet
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Department of Liver Diseases CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Olivier Loréal
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Department of Pathology Henri Mondor, 94000 Créteil, France
- INSERM U955, Team Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers, 94000 Créteil, France
| | - Zine-Eddine Khene
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Urology, CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Oscar Acosta
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Renaud De Crevoisier
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Radiotherapy, Centre Eugène Marquis, 35033 Rennes, France
| | - Nathalie Rioux-Leclercq
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Thierry Pecot
- Biosit Platform UAR 3480 CNRS US18 INSERM U955, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Solène-Florence Kammerer-Jacquet
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| |
Collapse
|
6
|
Gary PJ, Lal A, Simonetto DA, Gajic O, Gallo de Moraes A. Acute on chronic liver failure: prognostic models and artificial intelligence applications. Hepatol Commun 2023; 7:02009842-202304010-00015. [PMID: 36972378 PMCID: PMC10043584 DOI: 10.1097/hc9.0000000000000095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 03/29/2023] Open
Abstract
Critically ill patients presenting with acute on chronic liver failure (ACLF) represent a particularly vulnerable population due to various considerations surrounding the syndrome definition, lack of robust prospective evaluation of outcomes, and allocation of resources such as organs for transplantation. Ninety-day mortality related to ACLF is high and patients who do leave the hospital are frequently readmitted. Artificial intelligence (AI), which encompasses various classical and modern machine learning techniques, natural language processing, and other methods of predictive, prognostic, probabilistic, and simulation modeling, has emerged as an effective tool in various areas of healthcare. These methods are now being leveraged to potentially minimize physician and provider cognitive load and impact both short-term and long-term patient outcomes. However, the enthusiasm is tempered by ethical considerations and a current lack of proven benefits. In addition to prognostic applications, AI models can likely help improve the understanding of various mechanisms of morbidity and mortality in ACLF. Their overall impact on patient-centered outcomes and countless other aspects of patient care remains unclear. In this review, we discuss various AI approaches being utilized in healthcare and discuss the recent and expected future impact of AI on patients with ACLF through prognostic modeling and AI-based approaches.
Collapse
Affiliation(s)
- Phillip J Gary
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas A Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Ognjen Gajic
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| | - Alice Gallo de Moraes
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|