1
|
Rangaiah PKB, Pradeep Kumar BP, Augustine R. Histopathology-driven prostate cancer identification: A VBIR approach with CLAHE and GLCM insights. Comput Biol Med 2024; 182:109213. [PMID: 39357133 DOI: 10.1016/j.compbiomed.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Efficient extraction and analysis of histopathological images are crucial for accurate medical diagnoses, particularly for prostate cancer. This research enhances histopathological image reclamation by integrating Visual-Based Image Reclamation (VBIR) techniques with contrast-limited adaptive Histogram Equalization (CLAHE) and the Gray-Level Co-occurrence Matrix (GLCM) algorithm. The proposed method leverages CLAHE to improve image contrast and visibility, crucial for regions with varying illumination, and employs a non-linear Support Vector Machine (SVM) to incorporate GLCM features. Our approach achieved a notable success rate of 89.6%, demonstrating significant improvement in image analysis. The average execution time for matched tissues was 41.23 s (standard deviation 36.87 s), and for unmatched tissues, 21.22 s (standard deviation 29.18 s). These results underscore the method's efficiency and reliability in processing histopathological images. The findings from this study highlight the potential of our method to enhance image reclamation processes, paving the way for further research and advancements in medical image analysis. The superior performance of our approach signifies its capability to significantly improve histopathological image analysis, contributing to more accurate and efficient diagnostic practices.
Collapse
Affiliation(s)
- Pramod K B Rangaiah
- Microwaves in Medical Engineering Group, Division of Solid State Electronics, Department of Electrical Engineering, Uppsala University, Box 65 SE-751 03, Uppsala, Sweden
| | - B P Pradeep Kumar
- Department of Computer Science and Design, Atria Institute of Technology, Bengaluru 560024, India
| | - Robin Augustine
- Microwaves in Medical Engineering Group, Division of Solid State Electronics, Department of Electrical Engineering, Uppsala University, Box 65 SE-751 03, Uppsala, Sweden.
| |
Collapse
|
2
|
Park IG, Yoon SJ, Won SM, Oh KK, Hyun JY, Suk KT, Lee U. Gut microbiota-based machine-learning signature for the diagnosis of alcohol-associated and metabolic dysfunction-associated steatotic liver disease. Sci Rep 2024; 14:16122. [PMID: 38997279 PMCID: PMC11245548 DOI: 10.1038/s41598-024-60768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 07/14/2024] Open
Abstract
Alcoholic-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD) show a high prevalence rate worldwide. As gut microbiota represents current state of ALD and MASLD via gut-liver axis, typical characteristics of gut microbiota can be used as a potential diagnostic marker in ALD and MASLD. Machine learning (ML) algorithms improve diagnostic performance in various diseases. Using gut microbiota-based ML algorithms, we evaluated the diagnostic index for ALD and MASLD. Fecal 16S rRNA sequencing data of 263 ALD (control, elevated liver enzyme [ELE], cirrhosis, and hepatocellular carcinoma [HCC]) and 201 MASLD (control and ELE) subjects were collected. For external validation, 126 ALD and 84 MASLD subjects were recruited. Four supervised ML algorithms (support vector machine, random forest, multilevel perceptron, and convolutional neural network) were used for classification with 20, 40, 60, and 80 features, in which three nonsupervised ML algorithms (independent component analysis, principal component analysis, linear discriminant analysis, and random projection) were used for feature reduction. A total of 52 combinations of ML algorithms for each pair of subgroups were performed with 60 hyperparameter variations and Stratified ShuffleSplit tenfold cross validation. The ML models of the convolutional neural network combined with principal component analysis achieved areas under the receiver operating characteristic curve (AUCs) > 0.90. In ALD, the diagnostic AUC values of the ML strategy (vs. control) were 0.94, 0.97, and 0.96 for ELE, cirrhosis, and liver cancer, respectively. The AUC value (vs. control) for MASLD (ELE) was 0.93. In the external validation, the AUC values of ALD and MASLD (vs control) were > 0.90 and 0.88, respectively. The gut microbiota-based ML strategy can be used for the diagnosis of ALD and MASLD.ClinicalTrials.gov NCT04339725.
Collapse
Affiliation(s)
- In-Gyu Park
- Department of Electrical Engineering, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ji Ye Hyun
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea.
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea.
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
3
|
Juneja D. Artificial intelligence: Applications in critical care gastroenterology. Artif Intell Gastrointest Endosc 2024; 5:89138. [DOI: 10.37126/aige.v5.i1.89138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] Open
Abstract
Gastrointestinal (GI) complications frequently necessitate intensive care unit (ICU) admission. Additionally, critically ill patients also develop GI complications requiring further diagnostic and therapeutic interventions. However, these patients form a vulnerable group, who are at risk for developing side effects and complications. Every effort must be made to reduce invasiveness and ensure safety of interventions in ICU patients. Artificial intelligence (AI) is a rapidly evolving technology with several potential applications in healthcare settings. ICUs produce a large amount of data, which may be employed for creation of AI algorithms, and provide a lucrative opportunity for application of AI. However, the current role of AI in these patients remains limited due to lack of large-scale trials comparing the efficacy of AI with the accepted standards of care.
Collapse
Affiliation(s)
- Deven Juneja
- Department of Critical Care Medicine, Max Super Speciality Hospital, New Delhi 110017, India
| |
Collapse
|
4
|
Allaume P, Rabilloud N, Turlin B, Bardou-Jacquet E, Loréal O, Calderaro J, Khene ZE, Acosta O, De Crevoisier R, Rioux-Leclercq N, Pecot T, Kammerer-Jacquet SF. Artificial Intelligence-Based Opportunities in Liver Pathology-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13101799. [PMID: 37238283 DOI: 10.3390/diagnostics13101799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Artificial Intelligence (AI)-based Deep Neural Networks (DNNs) can handle a wide range of applications in image analysis, ranging from automated segmentation to diagnostic and prediction. As such, they have revolutionized healthcare, including in the liver pathology field. OBJECTIVE The present study aims to provide a systematic review of applications and performances provided by DNN algorithms in liver pathology throughout the Pubmed and Embase databases up to December 2022, for tumoral, metabolic and inflammatory fields. RESULTS 42 articles were selected and fully reviewed. Each article was evaluated through the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, highlighting their risks of bias. CONCLUSIONS DNN-based models are well represented in the field of liver pathology, and their applications are diverse. Most studies, however, presented at least one domain with a high risk of bias according to the QUADAS-2 tool. Hence, DNN models in liver pathology present future opportunities and persistent limitations. To our knowledge, this review is the first one solely focused on DNN-based applications in liver pathology, and to evaluate their bias through the lens of the QUADAS2 tool.
Collapse
Affiliation(s)
- Pierre Allaume
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Noémie Rabilloud
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Bruno Turlin
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Edouard Bardou-Jacquet
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Department of Liver Diseases CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Olivier Loréal
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Department of Pathology Henri Mondor, 94000 Créteil, France
- INSERM U955, Team Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers, 94000 Créteil, France
| | - Zine-Eddine Khene
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Urology, CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Oscar Acosta
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Renaud De Crevoisier
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Radiotherapy, Centre Eugène Marquis, 35033 Rennes, France
| | - Nathalie Rioux-Leclercq
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Thierry Pecot
- Biosit Platform UAR 3480 CNRS US18 INSERM U955, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Solène-Florence Kammerer-Jacquet
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| |
Collapse
|
5
|
Gary PJ, Lal A, Simonetto DA, Gajic O, Gallo de Moraes A. Acute on chronic liver failure: prognostic models and artificial intelligence applications. Hepatol Commun 2023; 7:02009842-202304010-00015. [PMID: 36972378 PMCID: PMC10043584 DOI: 10.1097/hc9.0000000000000095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 03/29/2023] Open
Abstract
Critically ill patients presenting with acute on chronic liver failure (ACLF) represent a particularly vulnerable population due to various considerations surrounding the syndrome definition, lack of robust prospective evaluation of outcomes, and allocation of resources such as organs for transplantation. Ninety-day mortality related to ACLF is high and patients who do leave the hospital are frequently readmitted. Artificial intelligence (AI), which encompasses various classical and modern machine learning techniques, natural language processing, and other methods of predictive, prognostic, probabilistic, and simulation modeling, has emerged as an effective tool in various areas of healthcare. These methods are now being leveraged to potentially minimize physician and provider cognitive load and impact both short-term and long-term patient outcomes. However, the enthusiasm is tempered by ethical considerations and a current lack of proven benefits. In addition to prognostic applications, AI models can likely help improve the understanding of various mechanisms of morbidity and mortality in ACLF. Their overall impact on patient-centered outcomes and countless other aspects of patient care remains unclear. In this review, we discuss various AI approaches being utilized in healthcare and discuss the recent and expected future impact of AI on patients with ACLF through prognostic modeling and AI-based approaches.
Collapse
Affiliation(s)
- Phillip J Gary
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas A Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Ognjen Gajic
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| | - Alice Gallo de Moraes
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Kalapala R, Rughwani H, Reddy DN. Artificial Intelligence in Hepatology- Ready for the Primetime. J Clin Exp Hepatol 2023; 13:149-161. [PMID: 36647407 PMCID: PMC9840075 DOI: 10.1016/j.jceh.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Artificial Intelligence (AI) is a mathematical process of computer mediating designing of algorithms to support human intelligence. AI in hepatology has shown tremendous promise to plan appropriate management and hence improve treatment outcomes. The field of AI is in a very early phase with limited clinical use. AI tools such as machine learning, deep learning, and 'big data' are in a continuous phase of evolution, presently being applied for clinical and basic research. In this review, we have summarized various AI applications in hepatology, the pitfalls and AI's future implications. Different AI models and algorithms are under study using clinical, laboratory, endoscopic and imaging parameters to diagnose and manage liver diseases and mass lesions. AI has helped to reduce human errors and improve treatment protocols. Further research and validation are required for future use of AI in hepatology.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- AI, artificial intelligence
- ALD, alcoholic liver disease
- ALT, alanine transaminase
- ANN, artificial neural network
- AST, aspartate aminotransferase
- AUD, alcohol use disorder
- CHB, chronic hepatitis B
- CHC, chronic hepatitis C
- CLD, chronic liver disease
- CNN, convolutional neural network
- DL, deep learning
- FIB-4, fibrosis-4 score
- GGTP, gamma glutamyl transferase
- HCC, hepatocellular carcinoma
- HDL, high density lipoprotein
- ML, machine learning
- MLR, multi-nomial logistic regressions
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NLP, natural language processing
- RF, random forest
- RTE, real-time tissue elastography
- SOLs, space-occupying lesions
- SVM, support vector machine
- artificial intelligence
- deep learning
- hepatology
- machine learning
Collapse
Affiliation(s)
- Rakesh Kalapala
- Department of Gastroenterology, Asian Institute of Gastroenterology and AIG Hospitals, Hyderabad, India
| | - Hardik Rughwani
- Department of Gastroenterology, Asian Institute of Gastroenterology and AIG Hospitals, Hyderabad, India
| | | |
Collapse
|
7
|
Alshagathrh FM, Househ MS. Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120748. [PMID: 36550954 PMCID: PMC9774180 DOI: 10.3390/bioengineering9120748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. OBJECTIVE This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. METHODOLOGY A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. RESULTS Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). CONCLUSION AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.
Collapse
|
8
|
Martínez JA, Alonso-Bernáldez M, Martínez-Urbistondo D, Vargas-Nuñez JA, Ramírez de Molina A, Dávalos A, Ramos-Lopez O. Machine learning insights concerning inflammatory and liver-related risk comorbidities in non-communicable and viral diseases. World J Gastroenterol 2022; 28:6230-6248. [PMID: 36504554 PMCID: PMC9730439 DOI: 10.3748/wjg.v28.i44.6230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/07/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The liver is a key organ involved in a wide range of functions, whose damage can lead to chronic liver disease (CLD). CLD accounts for more than two million deaths worldwide, becoming a social and economic burden for most countries. Among the different factors that can cause CLD, alcohol abuse, viruses, drug treatments, and unhealthy dietary patterns top the list. These conditions prompt and perpetuate an inflammatory environment and oxidative stress imbalance that favor the development of hepatic fibrogenesis. High stages of fibrosis can eventually lead to cirrhosis or hepatocellular carcinoma (HCC). Despite the advances achieved in this field, new approaches are needed for the prevention, diagnosis, treatment, and prognosis of CLD. In this context, the scientific com-munity is using machine learning (ML) algorithms to integrate and process vast amounts of data with unprecedented performance. ML techniques allow the integration of anthropometric, genetic, clinical, biochemical, dietary, lifestyle and omics data, giving new insights to tackle CLD and bringing personalized medicine a step closer. This review summarizes the investigations where ML techniques have been applied to study new approaches that could be used in inflammatory-related, hepatitis viruses-induced, and coronavirus disease 2019-induced liver damage and enlighten the factors involved in CLD development.
Collapse
Affiliation(s)
- J Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | - Marta Alonso-Bernáldez
- Precision Nutrition and Cardiometabolic Health, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | | | - Juan A Vargas-Nuñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Madrid 28222, Majadahonda, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico
| |
Collapse
|
9
|
Liver Function-How to Screen and to Diagnose: Insights from Personal Experiences, Controlled Clinical Studies and Future Perspectives. J Pers Med 2022; 12:jpm12101657. [PMID: 36294796 PMCID: PMC9605048 DOI: 10.3390/jpm12101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023] Open
Abstract
Acute and chronic liver disease is a relevant problem worldwide. Liver function plays a crucial role in the course of liver diseases not only in estimating prognosis but also with regard to therapeutic interventions. Within this review, we discuss and evaluate different tools from screening to diagnosis and give insights from personal experiences, controlled clinical studies and future perspectives. Finally, we offer our novel diagnostic algorithm to screen patients with presumptive acute or chronic liver disease in the daily clinical routine.
Collapse
|