1
|
Jin X, You Y, Ruan G, Zhou W, Li J, Li J. Deep mucosal healing in ulcerative colitis: how deep is better? Front Med (Lausanne) 2024; 11:1429427. [PMID: 39156693 PMCID: PMC11327023 DOI: 10.3389/fmed.2024.1429427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Ulcerative colitis (UC), characterized by its recurrent nature, imposes a significant disease burden and compromises the quality of life. Emerging evidence suggests that achieving clinical remission is not sufficient for long-term remission. In pursuit of a favorable prognosis, mucosal healing (MH) has been defined as the target of therapies in UC. This paradigm shift has given rise to the formulation of diverse endoscopic and histological scoring systems, providing distinct definitions for MH. Endoscopic remission (ER) has been widely employed in clinical practice, but it is susceptible to subjective factors related to endoscopists. And there's growing evidence that histological remission (HR) might be associated with a lower risk of disease flares, but the incorporation of HR as a routine therapeutic endpoint remains a debate. The integration of advanced technology has further enriched the definition of deep MH. Up to now, a universal standardized definition for deep MH in clinical practice is currently lacking. This review will focus on the definition of deep MH, from different dimensions, and analyze strengths and limitations, respectively. Subsequent multiple large-scale trials are needed to validate the concept of deep MH, offering valuable insights into potential benefits for UC patients.
Collapse
Affiliation(s)
- Xin Jin
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan You
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gechong Ruan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Masuta Y, Minaga K, Otsuka Y, Okai N, Hara A, Masaki S, Nagai T, Honjo H, Kudo M, Watanabe T. Cytokine and chemokine profiles in ulcerative colitis relapse after coronavirus disease 2019 vaccination. J Clin Biochem Nutr 2024; 74:127-135. [PMID: 38510687 PMCID: PMC10948343 DOI: 10.3164/jcbn.23-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 03/22/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines are highly effective; however, vaccine-related adverse events, including autoimmunity, have been reported. Case reports describing relapse or new-onset of ulcerative colitis (UC) after COVID-19 mRNA vaccination are available. However, the molecular mechanisms underlying the development of colonic inflammation associated with COVID-19 mRNA vaccination are poorly understood. Furthermore, it is unclear whether the relapse of UC after COVID-19 vaccination is driven by unique cytokine responses that differ from those of UC not associated with vaccination. mRNAs derived from COVID-19 vaccines are potent inducers of type I IFN response. We encountered three cases of UC relapse after COVID-19 vaccination. mRNA expressions of IFN-α, IFN-β, IL-1β, and IL-12/23p40 showed higher tendency in the colonic mucosa of patients with UC associated with vaccination compared with those not associated with vaccination. In contrast, the expressions of C-X-C motif chemokine ligand 9 (CXCL9) and CXCL10 were comparable. Immunofluorescence analyses also showed higher expression of IFN-α in the colonic mucosa of patients with UC associated with COVID-19 vaccination than in those not associated with vaccination. Taken together, these data suggest that the colonic mucosa of patients with UC who relapsed after COVID-19 vaccination was characterized by enhanced type I IFN responses.
Collapse
Affiliation(s)
- Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Sho Masaki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomoyuki Nagai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
3
|
Fang G, Kong F, Zhang H, Huang B, Zhang J, Zhang X. Association between inflammatory bowel disease and interleukins, chemokines: a two-sample bidirectional mendelian randomization study. Front Immunol 2023; 14:1168188. [PMID: 37228614 PMCID: PMC10203949 DOI: 10.3389/fimmu.2023.1168188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Mendelian randomization (MR) was used to evaluate the bidirectional causal relationship between inflammatory bowel disease (IBD) and interleukins (ILs), chemokines. Methods Genetic instruments and summary data of five ILs and six chemokines were obtained from a genome-wide association study database, and instrumental variables related to IBD were obtained from the FinnGen Consortium. Inverse variance weighting (IVW) was used as the main MR analysis method, and several other MR methods including MR-Egger and weighted median were used to confirm the reliability of the results. Sensitivity analyses such as heterogeneity and pleiotropy were also performed. Results The IVW method provided evidence to support that genetically predicted IL-16, IL-18, and CXCL10 significantly positively correlated with IBD, while IL-12p70 and CCL23 significantly negatively correlated with IBD. IL-16 and IL-18 had a suggestive association with an increased risk of ulcerative colitis (UC), and CXCL10 had a suggestive association with an increased risk of Crohn's disease (CD). However, there was no evidence to support that IBD and two main subtypes (UC and CD) are associated with changes in the levels of ILs and chemokines. The results of the sensitivity analyses were robust and no evidence of heterogeneity and horizontal pleiotropy was observed. Conclusions The present study showed that some ILs and chemokines affect IBD, but IBD and its main subtypes (UC and CD) have no effect on the level changes of ILs and chemokines.
Collapse
Affiliation(s)
| | | | | | | | - Jifa Zhang
- *Correspondence: Xueli Zhang, ; Jifa Zhang,
| | | |
Collapse
|
4
|
Uchiyama K, Takagi T, Mizushima K, Hirai Y, Asaeda K, Sugaya T, Kajiwara M, Kashiwagi S, Toyokawa Y, Hotta Y, Tanaka M, Inoue K, Katada K, Kamada K, Ishikawa T, Yasuda H, Konishi H, Kishimoto M, Naito Y, Itoh Y. Mucosal addressin cell adhesion molecule 1 expression reflects mucosal inflammation and subsequent relapse in patients with ulcerative colitis. J Crohns Colitis 2022; 17:786-794. [PMID: 36511086 DOI: 10.1093/ecco-jcc/jjac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Mucosal addressin cell adhesion molecule 1 (MAdCAM-1) is upregulated in the vascular endothelium of the colonic mucosa in ulcerative colitis (UC). Although the association between MAdCAM-1 expression and mucosal inflammation has been discussed, the association with the clinical course of UC patients has not been reported. In this study we investigated not only the association between mucosal MAdCAM-1 expression and mucosal inflammation, but also its association with subsequent relapse in UC patients with clinical remission. METHODS Eighty UC patients in remission who visited Kyoto Prefectural University of Medicine for follow-up for 2 years were included. Biopsy samples were collected during colonoscopy, and transcriptional expression levels of UC-related cytokines and MAdCAM-1 were quantified using real-time polymerase chain reaction. MAdCAM-1 mRNA expression and protein expression by immunohistochemistry was compared in patients who subsequently relapsed and those who remained in remission and examined in relation to endoscopic findings, histologic activity, and cytokine expression. RESULTS MAdCAM-1 expression was correlated with endoscopic severity, and significantly elevated in histological active mucosa than inactive mucosa. Furthermore, MAdCAM-1 expression levels were closely correlated with those of several cytokines. MAdCAM-1 mRNA and protein expression were significantly higher in the relapse group than in the remission group, indicating that MAdCAM-1 expression in the mucosa is already elevated in UC patients in clinical remission who subsequently relapse. CONCLUSIONS MAdCAM-1 expression in the colonic mucosa of UC patients related to mucosal inflammation and subsequent relapse; it may serve as a marker for both relapse and therapeutic effectiveness in UC.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan.,Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Yasuko Hirai
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Kohei Asaeda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Takeshi Sugaya
- Medical Regulatory Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Mariko Kajiwara
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Yuki Toyokawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Yuma Hotta
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Makoto Tanaka
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Hiroaki Yasuda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Mitsuo Kishimoto
- Department of Surgical Pathology, Kyoto City Hospital, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
5
|
Shi G, Kong J, Wang Y, Xuan Z, Xu F. Glycyrrhiza uralensis Fisch. alleviates dextran sulfate sodium-induced colitis in mice through inhibiting of NF-κB signaling pathways and modulating intestinal microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115640. [PMID: 36030029 DOI: 10.1016/j.jep.2022.115640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is widely used in traditional Chinese Medicine (TCM) for compound compatibility, which could reduce toxicity and increase efficacy of certain herbal medicine, and its active components prominently effects of inhibit of inflammation and regulate of immunity. AIM OF THE STUDY The study probed into the mechanism of the anti-inflammatory and immunomodulatory effects of licorice based on the domination of the T helper type 17/regulatory T cells (Th17/Treg) differentiation balance and the composition and structure of the intestinal flora through the nuclear factor kappa B (NF-κB) signaling pathway. MATERIALS AND METHODS BALB/c mice were inoculated with dextran sulfate sodium (DSS) to establish animal models of ulcerative colitis (UC). For the pharmacodynamic study, UC mice were observed for the anti-inflammatory effect of licorice water extraction (LWE) in vivo, including clinical observation and measurement of colon length. Hematoxylin-eosin (HE) staining was used to evaluate pathological conditions. Immunohistochemistry (IHC) and transmission electron microscopy (TEM) were performed to observe the intestinal barrier of the colons. Inflammatory cytokine levels were measured using with enzyme-linked immunosorbent assay (ELISA) kits. The proportions of T helper (Th) cells in the colons was assessed using flow cytometry. Gut microbiota diversity was detected using 16S ribosomal (r)DNA sequencing. In addition, Western blot (WB) assays were used to verify ROR-γt, Foxp3, TLR4, MyD88 and NF-κB expression according to a standard protocol. RESULTS LWE exerted a pharmacological anti-inflammatory effect by attenuating inflammation in the colonic tissues through affecting the protein expression of TLR4/MyD88/NF-κB, and increasing the expression of tight junction (TJ) protein in the colons, improving the integrity of the intestinal mucosal barrier in vivo. Moreover, LWE reversed the imbalance in Th17/Treg cells differentiation and influenced the protein expression of ROR-γt and Foxp3 in UC mouse colons. In particular, LWE significantly affected the diversity of the gut microbiota in UC mice, ameliorated the composition of dominant species, and significantly increased the type and quantity of probiotics. CONCLUSION Licorice tends to reduce inflammation and enhance the protective action of the intestinal mucosal barrier via the TLR4/MyD88/NF-κB signal transduction pathway and alter the imbalance of Th-cell differentiation. Notably, licorice may affect the diversity of intestinal microbiota and the content of beneficial bacteria in the colon, which is a potential mechanism for understanding anti-inflammatory and immunomodulatory effects in UC mice in vivo.
Collapse
Affiliation(s)
- Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Jinrong Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| |
Collapse
|
6
|
Gu W, Zhang L, Han T, Huang H, Chen J. Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J Inflamm Res 2022; 15:2631-2647. [PMID: 35494313 PMCID: PMC9049869 DOI: 10.2147/jir.s358807] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors are not clear yet. Methods Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their correlation with the inflammatory factors. Results DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while beneficial bacteria were the opposite. Conclusion Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Liangkun Zhang
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Tao Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Hailiang Huang, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing District, Jinan, People’s Republic of China, Tel +86 15628987355, Email
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
- Correspondence: Jian Chen, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), No. 105 Jiefang Road, Lixia District, Jinan, People’s Republic of China, Tel +86 133 7058 7597, Email
| |
Collapse
|