1
|
Gavette H, McDonald CL, Kostick-Quenet K, Mullen A, Najafi B, Finco MG. Advances in prosthetic technology: a perspective on ethical considerations for development and clinical translation. FRONTIERS IN REHABILITATION SCIENCES 2024; 4:1335966. [PMID: 38293290 PMCID: PMC10824968 DOI: 10.3389/fresc.2023.1335966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Technological advancements of prostheses in recent years, such as haptic feedback, active power, and machine learning for prosthetic control, have opened new doors for improved functioning, satisfaction, and overall quality of life. However, little attention has been paid to ethical considerations surrounding the development and translation of prosthetic technologies into clinical practice. This article, based on current literature, presents perspectives surrounding ethical considerations from the authors' multidisciplinary views as prosthetists (HG, AM, CLM, MGF), as well as combined research experience working directly with people using prostheses (AM, CLM, MGF), wearable technologies for rehabilitation (MGF, BN), machine learning and artificial intelligence (BN, KKQ), and ethics of advanced technologies (KKQ). The target audience for this article includes developers, manufacturers, and researchers of prosthetic devices and related technology. We present several ethical considerations for current advances in prosthetic technology, as well as topics for future research, that may inform product and policy decisions and positively influence the lives of those who can benefit from advances in prosthetic technology.
Collapse
Affiliation(s)
- Hayden Gavette
- Orthotics and Prosthetics Program, School of Health Professions, Baylor College of Medicine, Houston, TX, United States
| | - Cody L. McDonald
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Ashley Mullen
- Orthotics and Prosthetics Program, School of Health Professions, Baylor College of Medicine, Houston, TX, United States
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance Lab (iCAMP), Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - M. G. Finco
- Orthotics and Prosthetics Program, School of Health Professions, Baylor College of Medicine, Houston, TX, United States
- Interdisciplinary Consortium on Advanced Motion Performance Lab (iCAMP), Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Yamamoto A, Fujita K, Yamada E, Ibara T, Nihey F, Inai T, Tsukamoto K, Kobayashi Y, Nakahara K, Okawa A. Foot characteristics of the daily-life gait in postmenopausal females with distal radius fractures: a cross-sectional study. BMC Musculoskelet Disord 2023; 24:706. [PMID: 37670304 PMCID: PMC10478493 DOI: 10.1186/s12891-023-06845-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Gait decline in older adults is related to falling risk, some of which contribute to injurious falls requiring medical attention or restriction of activity of daily living. Among injurious falls, distal radius fracture (DRF) is a common initial fragility fracture associated with the subsequent fracture risk in postmenopausal females. The recent invention of an inertial measurement unit (IMU) facilitates the assessment of free-living gait; however, little is known about the daily gait characteristics related to the risk of subsequent fractures. We hypothesized that females with DRF might have early changes in foot kinematics in daily gait. The aim of this study was to evaluate the daily-life gait characteristics related to the risk of falls and fracture. METHODS In this cross-sectional study, we recruited 27 postmenopausal females with DRF as their first fragility fracture and 28 age-matched females without a history of fragility fractures. The participants underwent daily gait assessments for several weeks using in-shoe IMU sensors. Eight gait parameters and each coefficient of variance were calculated. Some physical tests, such as hand grip strength and Timed Up and Go tests, were performed to check the baseline functional ability. RESULTS The fracture group showed lower foot angles of dorsiflexion and plantarflexion in the swing phase. The receiver operating characteristic curve analyses revealed that a total foot movement angle (TFMA) < 99.0 degrees was the risk of subsequent fracture. CONCLUSIONS We extracted the daily-life gait characteristics of patients with DRF using in-shoe IMU sensors. A lower foot angle in the swing phase, TFMA, may be associated with the risk of subsequent fractures, which may be effective in evaluating future fracture risk. Further studies to predict and prevent subsequent fractures from daily-life gait are warranted.
Collapse
Affiliation(s)
- Akiko Yamamoto
- Department of Orthopaedic and Spinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Koji Fujita
- Department of Functional Joint Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| | - Eriku Yamada
- Department of Orthopaedic and Spinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Takuya Ibara
- Department of Functional Joint Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Fumiyuki Nihey
- Biometrics Research Laboratories, NEC Corporation, 1131, Hinode, Abiko-City, Chiba, 270-1198, Japan
| | - Takuma Inai
- QOL and Materials Research Group, Department of Life Science and Technology, National Institute of Advanced Industrial Science and Technology, Health and Medical Research Institute, 2217-14 Hayashi-Cho, Takamatsu-City, Kagawa, 761-0301, Japan
| | - Kazuya Tsukamoto
- Department of Orthopaedic and Spinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yoshiyuki Kobayashi
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, 2-8-5 Aomi, Koto-Ku, Tokyo, 135-0064, Japan
| | - Kentaro Nakahara
- Biometrics Research Laboratories, NEC Corporation, 1131, Hinode, Abiko-City, Chiba, 270-1198, Japan
| | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| |
Collapse
|