1
|
Chen Y, Gu X. [Research progress and clinical application of veneer materials for implant-fixed restoration in edentulous jaws]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:578-585. [PMID: 39289735 PMCID: PMC11528143 DOI: 10.3724/zdxbyxb-2024-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/07/2024] [Indexed: 09/19/2024]
Abstract
Commonly used materials for fixed restorations in edentulous jaws include acrylic resins, polymerized ceramics, ceramics and zirconia, which have distinct physicochemical properties and clinical application features. The selection of these materials in clinical practice is related to the prosthodontic space, oral soft and hard tissue conditions, occlusal force, lifestyle habits, oral parafunctions, opposing dentition materials, and expectations of patients. Common mechanical complications associated with fixed restorations in edentulous jaws are cracking/chipping and abrasion of the facing materials, which can be avoided through occlusal adjustment, restoration design and processing, and the selection of appropriate restorative materials. This article reviews the characteristics, selection, and design considerations of commonly used materials for fixed restorations in edentulous jaws, as well as the causes and management of common clinical complications related to restorative materials, aiming to provide references for the selection of appropriate materials in fixed restorations for edentulous jaws in clinical practice.
Collapse
Affiliation(s)
- Yan Chen
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Zhejiang University School of Stomatology, Hangzhou 310058, China.
| | - Xinhua Gu
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Lau LN, Cho JH, Jo YH, Yeo ISL. Biological effects of gamma-ray sterilization on 3 mol% yttria-stabilized tetragonal zirconia polycrystal: An in vitro study. J Prosthet Dent 2023; 130:936.e1-936.e9. [PMID: 37802736 DOI: 10.1016/j.prosdent.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
STATEMENT OF PROBLEM Selecting the sterilization method is important because sterilization can alter the surface chemistry of implant materials, including zirconia, and influence their cellular biocompatibility. Studies on the biological effects of sterilization on implant materials are lacking. PURPOSE The purpose of this in vitro study was to evaluate the biocompatibility of gamma-ray irradiated 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) compared with unirradiated titanium, 3Y-TZP, and pure gold. MATERIAL AND METHODS Disk-shaped specimens each of commercially pure grade 4 titanium, 3Y-TZP, gamma-rayed 3Y-TZP, and pure gold were prepared and evaluated for osteogenic potential by using a clonal murine cell line of immature osteoblasts derived from mice (MC3T3-E1 cells). The surface topography (n=3), chemical analysis of the disks (n=3), and cell morphology cultured on these surfaces were examined using scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy. Cellular biocompatibility was analyzed for 1 and 3 days after seeding. Cell adhesion and spreading were evaluated using confocal laser scanning microscopy (n=3). Cell proliferation was evaluated using methyl thiazolyl tetrazolium assay (n=3). Kruskal-Wallis and Bonferroni corrections were used to evaluate the statistical significance of the intergroup differences (α=.05). RESULTS Gamma-ray sterilization of 3Y-TZP showed significantly higher surface roughness compared with titanium and gold (P<.002). On day 1, the proliferation and adhesion of MC3T3-E1 cells cultured on gamma-rayed 3Y-TZP were significantly higher than those cultured on gold (P<.05); however, cell spreading was significantly lower than that of titanium on days 1 and 3 (P<.05). On day 3, cell proliferation of gamma-rayed 3Y-TZP was significantly lower than that of unirradiated 3Y-TZP (P<.05). Cell adhesion of gamma-rayed 3Y-TZP was slightly lower than that of zirconia and titanium but without significant difference (P>.05). CONCLUSIONS Gamma-rayed zirconia exhibited increased surface roughness compared with titanium and significantly decreased bioactivity compared with titanium and zirconia. The use of gamma-ray sterilization on zirconia is not promising regarding biocompatibility, and the effect of this sterilization method on implant materials warrants further investigation.
Collapse
Affiliation(s)
- Le Na Lau
- Graduate student, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jun-Ho Cho
- Clinical Instructor, Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Ye-Hyeon Jo
- Senior Researcher, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In-Sung Luke Yeo
- Professor, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea..
| |
Collapse
|
3
|
Mijiritsky E, Elad A, Krausz R, Ivanova V, Zlatev S. Clinical performance of full-arch implant-supported fixed restorations made of monolithic zirconia luted to a titanium bar: A retrospective study with a mean follow-up of 16 months. J Dent 2023; 137:104675. [PMID: 37607658 DOI: 10.1016/j.jdent.2023.104675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
OBJECTIVES This retrospective case series aimed to evaluate the short-term clinical advantages and limitations of full-arch implant-supported restorations made of monolithic zirconia suprastructures passively luted to titanium bar infrastructures and to report the rate of complications within a minimum of 1-year follow-up. MATERIALS AND METHODS This study included 31 patients (19 men and 12 women) requiring full-arch implant-supported prostheses in the upper or lower jaw. The patients were treated using an entirely digital approach from implant planning and guided implant placement to prosthetic construction planning, design, and fabrication. Full-arch implant-supported monolithic zirconia suprastructures luted to prism-shaped titanium bars were used in all the cases. All the restorations were evaluated for biological and technical complications during fixed control appointments. RESULTS No implant failures or serviceable prosthetic complications were reported, and the prosthetic survival rate was 100%, with a follow-up duration ranging from 12 months to 20 months. In two cases, a fracture line was observed in the zirconia suprastructures, although it did not require any intervention. CONCLUSIONS After a 16-month mean follow-up period, the monolithic zirconia implant-supported full-arch fixed dental prostheses demonstrated no biological or technical complications. Further clinical studies with long-term results are required to confirm these reported outcomes. CLINICAL SIGNIFICANCE CAD-/CAM-milled monolithic zirconia structures passively luted to titanium bar infrastructures are a viable treatment option for full-arch restorations over implants, demonstrating 100% survival and success rates in the present study. The outcomes of this short-term retrospective study indicated high success in function, aesthetics, phonetics, and the ability to maintain flawless hygiene. However, the long-term results of restorations produced using the proposed technique should be considered before recommending this approach for routine clinical use.
Collapse
Affiliation(s)
- Eitan Mijiritsky
- Department of Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, The Faculty of Medicine, Tel-Aviv University, Tel Aviv 6139001, Israel
| | | | | | - Vasilena Ivanova
- Oral Surgery Department, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria.
| | - Stefan Zlatev
- CAD/CAM Center of Dental Medicine at the Research Institute, Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
4
|
El Shafei SF, Raafat SN, Farag EA. Enhanced human periodontal ligament stem cell viability and osteogenic differentiation on two implant materials: An experimental in vitro study. F1000Res 2023; 12:447. [PMID: 37614561 PMCID: PMC10442589 DOI: 10.12688/f1000research.129562.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Surface roughness of dental implants impacts the survival of adult periodontal stem cells and rate of differentiation. This research was conducted to test how human periodontal ligament stem cells behaved on yttria stabilized tetragonal zirconia polycrystals and polyetheretherketone (PEEK) discs with different surface topographies. Methods: Discs roughening was prepared by sandblasting. Stem cells were cultivated on zirconia discs with a polished surface, PEEK discs with a polished surface, sandblasted zirconia discs and sandblasted PEEK discs. Cells viability was assessed after 24, 48, 72 hours. Scanning electron microscopy was used to examine the adherence and attachment of cells. Osteoblastic differentiation capacity was studied by checking the mineralization clusters development through alizarin red S staining and alkaline phosphatase assay. ANOVA and the Tukey post hoc test were used for the statistical analysis. Results: Polished PEEK discs showed lower cell viability, whereas roughened sandblasted zirconia and PEEK discs showed the highest proliferation rates and cell viability percent. The osteogenic differentiation was enhanced for rough surfaces in comparison to polished surfaces. Sandblasted zirconia and PEEK discs showed a markedly increased mineralized nodule development and ALP enzyme activity compared to the polished surface and control. Conclusions: Micro- topographies creation on the PEEK implant surface enhances stem cell attachment, viability, and osteogenic differentiation.
Collapse
Affiliation(s)
- Sara F. El Shafei
- Removable Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Shereen N. Raafat
- Department of Pharmacology, Director of Stem Cell and Tissue Culture Hub, Centre of Innovative Dental Sciences (CIDS), Faculty of Dentistry,, The British University in Egypt, Cairo, Egypt
| | - Engy A. Farag
- Fixed Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
5
|
Bizo L, Mureşan-Pop M, Barabás R, Barbu-Tudoran L, Berar A. In Vitro Degradation of Mg-Doped ZrO 2 Bioceramics at the Interface with Xerostom ® Saliva Substitute Gel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2680. [PMID: 37048973 PMCID: PMC10096315 DOI: 10.3390/ma16072680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Zirconia-based bioceramics, one of the most important materials used for dental applications, have been intensively studied in recent years due to their excellent mechanical resistance and chemical inertness in the mouth. In this work, the structural, morphological and dissolution properties of the Zr1-xMgxO2 (x = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) system, prepared by the conventional ceramic method, were evaluated before and after immersion in saliva substitute gel (Xerostom®, Biocosmetics Laboratories, Madrid, Spain), one of the most common topical dry mouth products used in dentistry. The X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) techniques were employed to investigate the phase transformations and morphology of the ceramics during the degradation process in Xerostom®. In vitro analyses showed overall good stability in the Xerostom® environment, except for the x = 0.05 composition, where significant t- to m-ZrO2 transformation occurred. In addition, the strong interconnection of the grains was maintained after immersion, which could allow a high mechanical strength of the ceramics to be obtained.
Collapse
Affiliation(s)
- Liliana Bizo
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Str., RO-400271 Cluj-Napoca, Romania;
| | - Marieta Mureşan-Pop
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Str., RO-400271 Cluj-Napoca, Romania;
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Str., RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donath Str., RO-400293 Cluj-Napoca, Romania
| | - Antonela Berar
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 32 Clinicilor Str., RO-400006 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Osman MA, Alamoush RA, Kushnerev E, Seymour KG, Shawcross S, Yates JM. Human osteoblasts response to different dental implant abutment materials: An in-vitro study. Dent Mater 2022; 38:1547-1557. [PMID: 35909000 DOI: 10.1016/j.dental.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study aimed to investigate human osteoblasts (HOB) response towards different dental implant abutment materials. METHODS Five dental implant abutment materials were investigated: (1) titanium (Ti), (2) titanium coated nitride (TiN), (3) cobalt chromium (CoCr), (4) zirconia (ZrO₂), and (5) modified polyether ether ketone (m-PEEK). HOBs were cultured, expanded, and seeded according to the supplier's protocol (PromoCell, UK). Cell proliferation and cytotoxicity were evaluated at days 1, 3, 5, and 10 using Alamar Blue (alamarBlue) and lactate dehydrogenase (LDH) colorimetric assays. Data were analysed via two-way ANOVA, one-way ANOVA and Tukey's post hoc test (significance was determined as p < 0.05 for all tests). RESULTS All the investigated materials showed high and comparable initial proliferation activities apart from ZrO₂ (46.92%), with P% of 79.91%, 68.77%, 73.20%, and 65.46% for Ti, TiN, CoCr, and m-PEEK, respectively. At day 10, all materials exhibited comparable and lower P% than day 1 apart from TiN (70.90%) with P% of 30.22%, 40.64%, 37.27%, and 50.65% for Ti, CoCr, ZrO₂, and m-PEEK, respectively. The cytotoxic effect of the investigated materials was generally low throughout the whole experiment. At day 10, the cytotoxicity % was 7.63%, 0.21%, 13.30%, 5.32%, 8.60% for Ti, TiN, CoCr, ZrO₂, and m-PEEK. The Two-way ANOVA and Tukey's Multiple Comparison Method highlighted significant material and time effects on cell proliferation and cytotoxicity, and a significant interaction (p < 0.0001) between the tested materials. Notably, TiN and m-PEEK showed improved HOB proliferation activity and cytotoxic levels than the other investigated materials. In addition, a non-significant negative correlation between viability and cytotoxicity was found for all tested materials. Ti (p = 0.07), TiN (p = 0.28), CoCr (p = 0.15), ZrO₂ (p = 0.17), and m-PEEK (p = 0.12). SIGNIFICANCE All the investigated materials showed excellent biocompatibility properties with more promising results for the newly introduced TiN and m-PEEK as alternatives to the traditionally used dental implant and abutment materials.
Collapse
Affiliation(s)
- Muataz A Osman
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom; Periodontology Department, Faculty of Dentistry, The University of Benghazi, Benghazi, Libya; Restorative Department, Faculty of Dentistry, Libyan International Medical University, Benghazi, Libya; Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Rasha A Alamoush
- Prosthodontic Department, School of Dentistry, University of Jordan, Amman, Jordan
| | - Evgeny Kushnerev
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Kevin G Seymour
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Susan Shawcross
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Julian M Yates
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
7
|
Prosthetic Materials Used for Implant-Supported Restorations and Their Biochemical Oral Interactions: A Narrative Review. MATERIALS 2022; 15:ma15031016. [PMID: 35160962 PMCID: PMC8839238 DOI: 10.3390/ma15031016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to outline relevant elements regarding the biochemical interactions between prosthetic materials used for obtaining implant-supported restorations and the oral environment. Implant-supported prostheses have seen unprecedented development in recent years, benefiting from the emergence of both new prosthetic materials (with increased biocompatibility and very good mechanical behavior), and computerized manufacturing technologies, which offer predictability, accuracy, and reproducibility. On the other hand, the quality of conventional materials for obtaining implant-supported prostheses is acknowledged, as they have already proven their clinical performance. The properties of PMMA (poly (methyl methacrylate))-which is a representative interim material frequently used in prosthodontics-and of PEEK (polyether ether ketone)-a biomaterial which is placed on the border between interim and final prosthetic use-are highlighted in order to illustrate the complex way these materials interact with the oral environment. In regard to definitive prosthetic materials used for obtaining implant-supported prostheses, emphasis is placed on zirconia-based ceramics. Zirconia exhibits several distinctive advantages (excellent aesthetics, good mechanical behavior, biocompatibility), through which its clinical applicability has become increasingly wide. Zirconia's interaction with the oral environment (fibroblasts, osteoblasts, dental pulp cells, macrophages) is presented in a relevant synthesis, thus revealing its good biocompatibility.
Collapse
|
8
|
Zieniewska I, Maciejczyk M, Zalewska A. The Effect of Selected Dental Materials Used in Conservative Dentistry, Endodontics, Surgery, and Orthodontics as Well as during the Periodontal Treatment on the Redox Balance in the Oral Cavity. Int J Mol Sci 2020; 21:ijms21249684. [PMID: 33353105 PMCID: PMC7767252 DOI: 10.3390/ijms21249684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress (OS) is a redox homeostasis disorder that results in oxidation of cell components and thus disturbs cell metabolism. OS is induced by numerous internal as well as external factors. According to recent studies, dental treatment may also be one of them. The aim of our work was to assess the effect of dental treatment on the redox balance of the oral cavity. We reviewed literature available in PubMed, Medline, and Scopus databases, including the results from 2010 to 2020. Publications were searched according to the keywords: oxidative stress and dental monomers; oxidative stress and amalgam; oxidative stress and periodontitis, oxidative stress and braces, oxidative stress and titanium; oxidative stress and dental implants, oxidative stress and endodontics treatment, oxidative stress and dental treatment; and oxidative stress and dental composite. It was found that dental treatment with the use of composites, amalgams, glass-ionomers, materials for root canal filling/rinsing, orthodontic braces (made of various metal alloys), titanium implants, or whitening agents can disturb oral redox homeostasis by affecting the antioxidant barrier and increasing oxidative damage to salivary proteins, lipids, and DNA. Abnormal saliva secretion/composition was also observed in dental patients in the course of OS. It is suggested that the addition of antioxidants to dental materials or antioxidant therapy applied during dental treatment could protect the patient against harmful effects of OS in the oral cavity.
Collapse
Affiliation(s)
- Izabela Zieniewska
- Doctoral Studies, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274 Bialystok, Poland
- Correspondence: (I.Z.); (A.Z.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-022 Bialystok, Poland;
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274 Bialystok, Poland
- Correspondence: (I.Z.); (A.Z.)
| |
Collapse
|