1
|
Qian H, Guo J, Shi H. Genetic manipulation of the genes for clonal seeds results in sterility in cotton. BMC PLANT BIOLOGY 2024; 24:946. [PMID: 39390400 PMCID: PMC11468858 DOI: 10.1186/s12870-024-05674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Heterosis is a common phenomenon in plants and has been extensively applied in crop breeding. However, the superior traits in the hybrids can only be maintained in the first generation but segregate in the following generations. Maintaining heterosis in generations has been challenging but highly desirable in crop breeding. Recent study showed that maternally produced diploid seeds could be achieved in rice by knocking out three meiosis related genes, namely REC8, PAIR1, OSD1 to create MiMe in combination with egg cell specific expression of BBM transcription factor, a technology called clonal seeds. Interestingly, there has been very limited reports indicating the feasibility of this approach in other crops. RESULTS In this study, we aimed to test whether clonal seeds could be created in cotton. We identified the homologs of the three meiosis related genes in cotton and used the multiplex CRISPR/Cas9 gene editing system to simultaneously knock out these three genes in both A and D sub-genomes. More than 50 transgenic cotton plants were generated, and fragment analysis indicated that multiple gene knockouts occurred in the transgenic plants. However, all the transgenic plants were sterile apparently due to the lack of pollen. Pollination of the flowers of the transgenic plants using the wild type pollens could not generate seeds, an indication of defects in the formation of female sexual cells in the transgenic plants. In addition, we generated transgenic cotton plants expressing the cotton BBM gene driven by the Arabidopsis egg cell specific promoter pDD45. Two transgenic plants were obtained, and both showed severely reduced fertility. CONCLUSIONS Overall, our results indicate that knockout of the clonal seeds related genes in cotton causes sterility and how to manipulate genes to create clonal seeds in cotton requires further research.
Collapse
Affiliation(s)
- Hongjia Qian
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jianfei Guo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Wang H, Cai X, Umer MJ, Xu Y, Hou Y, Zheng J, Liu F, Wang K, Chen M, Ma S, Yu J, Zhou Z. Genetic Analysis of Cotton Fiber Traits in Gossypium Hybrid Lines. PHYSIOLOGIA PLANTARUM 2024; 176:e14442. [PMID: 39030776 DOI: 10.1111/ppl.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 07/22/2024]
Abstract
Cotton plays a crucial role in the progress of the textile industry and the betterment of human life by providing natural fibers. In our study, we explored the genetic determinants of cotton architecture and fiber yield and quality by crossbreeding Gossypium hirsutum and Gossypium barbadense, creating a recombinant inbred line (RIL) population. Utilizing SNP markers, we constructed an extensive genetic map encompassing 7,730 markers over 2,784.2 cM. We appraised two architectural and seven fiber traits within six environments, identifying 58 QTLs, of which 49 demonstrated stability across these environments. These encompassed QTLs for traits such as lint percentage (LP), boll weight (BW), fiber strength (STRENGTH), seed index (SI), and micronaire (MIC), primarily located on chromosomes chr-A07, chr-D06, and chr-D07. Notably, chr-D07 houses a QTL region affecting SI, corroborated by multiple studies. Within this region, the genes BZIP043 and SEP2 were identified as pivotal, with SEP2 particularly showing augmented expression in developing ovules. These discoveries contribute significantly to marker-assisted selection, potentially elevating both the yield and quality of cotton fiber production. These findings provide valuable insights into marker-assisted breeding strategies, offering crucial information to enhance fiber yield and quality in cotton production.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Jie Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Mengshan Chen
- Chinese Academy of Agricultural Science, Beijing, China
| | | | - Jingzhong Yu
- Standing Committee of the People's Congress of Jiangsu Province, Nanjing, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| |
Collapse
|
3
|
Li H, Wang X, Qin N, Hu D, Jia Y, Sun G, He L, Zhang H, Dai P, Peng Z, Pang N, Pan Z, Zhang X, Dong Q, Chen B, Gui H, Pang B, Zhang X, He S, Song M, Du X. Genomic loci associated with leaf abscission contribute to machine picking and environmental adaptability in upland cotton (Gossypium hirsutum L.). J Adv Res 2024; 58:31-43. [PMID: 37236544 PMCID: PMC10982856 DOI: 10.1016/j.jare.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Defoliation by applying defoliants before machine picking is an important agricultural practice that enhances harvesting efficiency and leads to increased raw cotton purity. However, the fundamental characteristics of leaf abscission and the underlying genetic basis in cotton are not clearly understood. OBJECTIVES In this study, we aimed to (1) reveal the phenotypic variations in cotton leaf abscission, (2) discover the whole-genome differentiation sweeps and genetic loci related to defoliation, (3) identify and verify the functions of key candidate genes associated with defoliation, and (4) explore the relationship between haplotype frequency of loci and environmental adaptability. METHODS Four defoliation-related traits of 383 re-sequenced Gossypium hirsutum accessions were investigated in four environments. The genome-wide association study (GWAS), linkage disequilibrium (LD) interval genotyping and functional identification were conducted. Finally, the haplotype variation related to environmental adaptability and defoliation traits was revealed. RESULTS Our findings revealed the fundamental phenotypic variations of defoliation traits in cotton. We showed that defoliant significantly increased the defoliation rate without incurring yield and fiber quality penalties. The strong correlations between defoliation traits and growth period traits were observed. A genome-wide association study of defoliation traits identified 174 significant SNPs. Two loci (RDR7 on A02 and RDR13 on A13) that significantly associated with the relative defoliation rate were described, and key candidate genes GhLRR and GhCYCD3;1, encoding a leucine-rich repeat (LRR) family protein and D3-type cell cyclin 1 protein respectively, were functional verified by expression pattern analysis and gene silencing. We found that combining of two favorable haplotypes (HapRDR7 and HapRDR13) improved sensitivity to defoliant. The favorable haplotype frequency generally increased in high latitudes in China, enabling adaptation to the local environment. CONCLUSION Our findings lay an important foundation for the potentially broad application of leveraging key genetic loci in breeding machine-pickable cotton.
Collapse
Affiliation(s)
- Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ning Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; College of Agriculture, Tarim University, Alar 843300, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang 455000, China
| | - Liangrong He
- College of Agriculture, Tarim University, Alar 843300, China
| | - Hengheng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Panhong Dai
- Anyang Institute of Technology, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nianchang Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaomeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiang Dong
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huiping Gui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baoyin Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiling Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Meizhen Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
4
|
Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early-maturing cotton research. THE NEW PHYTOLOGIST 2023; 237:1100-1114. [PMID: 36352520 DOI: 10.1111/nph.18611] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cotton's fundamental requirements for long periods of growth and specific seasonal temperatures limit the global arable areas that can be utilized to cultivate cotton. This constraint can be alleviated by breeding for early-maturing varieties. By delaying the sowing dates without impacting the boll-opening time, early-maturing varieties not only mitigate the yield losses brought on by unfavorable weathers in early spring and late autumn but also help reducing the competition between cotton and other crops for arable land, thereby optimizing the cropping system. This review presents studies and breeding efforts for early-maturing cotton, which efficiently pyramid early maturity, high-quality, multiresistance traits, and suitable plant architecture by leveraging pleiotropic genes. Attempts are also made to summarize our current understanding of the molecular mechanisms underlying early maturation, which involves many pathways such as epigenetic, circadian clock, and hormone signaling pathways. Moreover, new avenues and effective measures are proposed for fine-scale breeding of early-maturing crops to ensure the healthy development of the agricultural industry.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yanli Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, Hainan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
5
|
Liu Y, Nazir MF, He S, Li H, Pan Z, Sun G, Dai P, Wang L, Du X. Deltapine 15 contributes to the genomic architecture of modern upland cotton cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1401-1411. [PMID: 35146550 DOI: 10.1007/s00122-022-04042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Foundation parents play a critical role in the genetic constituents of the derived genotypes. Deltapine-15 (DLP-15), introduced to China in 1950, is one of the most commonly used parents for early breeding programs in China. However, the formation and inheritance patterns of genomic constituents have not been studied. Therefore, this study aimed at understanding and exploring the genomic architecture of 146 DLP-15 derived cultivars with a common foundation parent DLP-15. Population structure based on sequencing data clustered genotypes into two groups (G1 and G2) supported by principal component analysis. Further exploration led to the identification of Chr-A08 with significantly differentiated regions between two groups. Moreover, we identified genome-wide identity by descent (IBD) segments (840 segments) to understand the genomic inheritance pattern in DLP-15 derived cultivars, spanning the 20-95 Mb region on Chr-A08. Interestingly, Chr-A08 depicted a unique inheritance pattern from DLP-15 to its derived cultivars. IBD-segment-based haplotype analysis suggested significant differences among the two groups. Phenotypic trait association with DLP-derived haplotypes concerning Chr-A08 suggested a significant increase in yield and fiber quality. Furthermore, distinguished IBD segments overlapped with previously reported QTLs concerning fiber yield and quality. Our results systematically identified genomic signatures transmitted from the foundation parent DLP-15 to its derived cultivars and provided a basis for further exploiting excellent haplotypes associated with DLP-15.
Collapse
Affiliation(s)
- Yingfei Liu
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Mian Faisal Nazir
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, Hainan, China
| | - Shoupu He
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, Hainan, China
| | - Hongge Li
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoe Pan
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Panhong Dai
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liyuan Wang
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiongming Du
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, Hainan, China.
| |
Collapse
|
6
|
Peng Z, Li H, Sun G, Dai P, Geng X, Wang X, Zhang X, Wang Z, Jia Y, Pan Z, Chen B, Du X, He S. CottonGVD: A Comprehensive Genomic Variation Database for Cultivated Cottons. FRONTIERS IN PLANT SCIENCE 2021; 12. [PMID: 34992626 PMCID: PMC8724205 DOI: 10.3389/fpls.2021.803736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cultivated cottons are the most important economic crop, which produce natural fiber for the textile industry. In recent years, the genetic basis of several essential traits for cultivated cottons has been gradually elucidated by decoding their genomic variations. Although an abundance of resequencing data is available in public, there is still a lack of a comprehensive tool to exhibit the results of genomic variations and genome-wide association study (GWAS). To assist cotton researchers in utilizing these data efficiently and conveniently, we constructed the cotton genomic variation database (CottonGVD; http://120.78.174.209/ or http://db.cngb.org/cottonGVD). This database contains the published genomic information of three cultivated cotton species, the corresponding population variations (SNP and InDel markers), and the visualized results of GWAS for major traits. Various built-in genomic tools help users retrieve, browse, and query the variations conveniently. The database also provides interactive maps (e.g., Manhattan map, scatter plot, heatmap, and linkage disequilibrium block) to exhibit GWAS and expression GWAS results. Cotton researchers could easily focus on phenotype-associated loci visualization, and they are interested in and screen for candidate genes. Moreover, CottonGVD will continue to update by adding more data and functions.
Collapse
|
7
|
Nazir MF, He S, Ahmed H, Sarfraz Z, Jia Y, Li H, Sun G, Iqbal MS, Pan Z, Du X. Genomic insight into the divergence and adaptive potential of a forgotten landrace G. hirsutum L. purpurascens. J Genet Genomics 2021; 48:473-484. [PMID: 34272194 DOI: 10.1016/j.jgg.2021.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 11/28/2022]
Abstract
Wild progenitors are an excellent source for strengthening the genetic basis and accumulation of desirable variation lost because of directional selection and adaptation in modern cultivars. Here, we re-evaluate a landrace of Gossypium hirsutum, formerly known as Gossypium purpurascens. Our study seeks to understand the genomic structure, variation, and breeding potential of this landrace, providing potential insights into the biogeographic history and genomic changes likely associated with domestication. A core set of accessions, including current varieties, obsolete accessions, G. purpurascens, and other geographical landraces, are subjected to genotyping along with multilocation phenotyping. Population fixation statistics suggests a marked differentiation between G. purpurascens and three other groups, emphasizing the divergent genomic behavior of G. purpurascens. Phylogenetic analysis establishes the primitive nature of G. purpurascens, identifying it as a vital source of functional variation, the inclusion of which in the upland cotton (cultivated G. hirsutum) gene pool may broaden the genetic basis of modern cultivars. Genome-wide association results indicate multiple loci associated with domestication regions corresponding to flowering and fiber quality. Moreover, the conserved nature of G. purpurascens can also provide insights into the evolutionary process of G. hirsutum.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haris Ahmed
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zareen Sarfraz
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gaofei Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Muhammad Shahid Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Cotton Research Institute, Ayub Agricultural Research Institute, Multan 60000, Pakistan
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Dai P, Sun G, Jia Y, Pan Z, Tian Y, Peng Z, Li H, He S, Du X. Extensive haplotypes are associated with population differentiation and environmental adaptability in Upland cotton (Gossypium hirsutum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3273-3285. [PMID: 32844253 DOI: 10.1007/s00122-020-03668-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/08/2020] [Indexed: 05/06/2023]
Abstract
Three extensive eco-haplotypes associated with population differentiation and environmental adaptability in Upland cotton were identified, with A06_85658585, A08_43734499 and A06_113104285 considered the eco-loci for environmental adaptability. Population divergence is suggested to be the primary force driving the evolution of environmental adaptability in various species. Chromosome inversion increases reproductive isolation between subspecies and accelerates population divergence to adapt to new environments. Although modern cultivated Upland cotton (Gossypium hirsutum L.) has spread worldwide, the noticeable phenotypic differences still existed among cultivars grown in different areas. In recent years, the long-distance migration of cotton cultivation areas throughout China has demanded that breeders better understand the genetic basis of environmental adaptability in Upland cotton. Here, we integrated the genotypes of 419 diverse accessions, long-term environment-associated variables (EAVs) and environment-associated traits (EATs) to evaluate subgroup differentiation and identify adaptive loci in Upland cotton. Two highly divergent genomic regions were found on chromosomes A06 and A08, which likely caused by extensive chromosome inversions. The subgroups could be geographically classified based on distinct haplotypes in the divergent regions. A genome-wide association study (GWAS) also confirmed that loci located in these regions were significantly associated with environmental adaptability in Upland cotton. Our study first revealed the cause of population divergence in Upland cotton, as well as the consequences of variation in its environmental adaptability. These findings provide new insights into the genetic basis of environmental adaptability in Upland cotton, which could accelerate the development of molecular markers for adaptation to climate change in future cotton breeding.
Collapse
Affiliation(s)
- Panhong Dai
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Agricultural College, Yangtze University, Jingzhou, 434000, China
| | - Gaofei Sun
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yinhua Jia
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoe Pan
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yingbing Tian
- Agricultural College, Yangtze University, Jingzhou, 434000, China
| | - Zhen Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongge Li
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Shoupu He
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiongming Du
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton. PLANTS 2020; 9:plants9060711. [PMID: 32503111 PMCID: PMC7356552 DOI: 10.3390/plants9060711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Upland cotton is the most economically important fibre crop. The human-mediated selection has resulted in modern upland cultivars with higher yield and better fibre quality. However, changes in genome structure resulted from human-mediated selection are poorly understood. Comparative population genomics offers us tools to dissect the genetic history of domestication and helps to understand the genome-wide effects of human-mediated selection. Hereby, we report a comprehensive assessment of Gossypium hirsutum landraces, obsolete cultivars and modern cultivars based on high throughput genome-wide sequencing of the core set of genotypes. As a result of the genome-wide scan, we identified 93 differential regions and 311 selection sweeps associated with domestication and improvement. Furthermore, we performed genome-wide association studies to identify traits associated with the differential regions and selection sweeps. Our study provides a genetic basis to understand the domestication process in Chinese cotton cultivars. It also provides a comprehensive insight into changes in genome structure due to selection and improvement during the last century. We also identified multiple genome-wide associations (GWAS associations) for fibre yield, quality and other morphological characteristics.
Collapse
|
10
|
Zhang X, Zhang Z, Zhou R, Wang Q, Wang L. Ratooning Annual Cotton ( Gossypium spp.) for Perennial Utilization of Heterosis. FRONTIERS IN PLANT SCIENCE 2020; 11:554970. [PMID: 33343589 PMCID: PMC7744415 DOI: 10.3389/fpls.2020.554970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
This paper reviews an important topic within the broader framework of the use of ratoon cotton for the development of a cost-saving and efficient method for the perennial production of hybrid cotton seeds. Cotton has a botanically indeterminate perennial growth habit and originated in the tropics. However, cotton has been domesticated as an annual crop in temperate areas worldwide. Ratoon cultivation has an important application value and is important for cotton production, breeding, and basic research. In particular, ratooned male-sterile lines have four advantages: an established root system, an indeterminate flowering habit, ratooning ability, and perennial maintenance of sterility in the absence of a matched maintainer. These advantages can help reduce the costs of producing F1 hybrid cotton seeds and can help breed high-yielding hybrid combinations because ratooning is a type of asexual reproduction that allows genotypes to remain unchanged. However, ratooning of cotton is highly complex and leads to problems, such as the accumulation of pests and diseases, decreased boll size, stand loss during severe winters, and harmful regrowth during mild winters, which need to be resolved. In summary, ratoon cotton has advantages and disadvantages for the production of hybrid cotton seeds, and future prospects of ratooning annual cotton for the perennial utilization of heterosis are promising if the mechanization of seed production can be widely applied in practice.
Collapse
Affiliation(s)
- Xin Zhang
- Biological Postdoctoral Research Station, Henan Normal University, Xinxiang, China
- Postdoctoral Research Base, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Zhang
- Postdoctoral Research Base, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiyong Zhang,
| | - Ruiyang Zhou
- College of Agronomy, Guangxi University, Nanning, China
| | - Qinglian Wang
- Postdoctoral Research Base, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Linsong Wang
- Biological Postdoctoral Research Station, Henan Normal University, Xinxiang, China
- Linsong Wang,
| |
Collapse
|
11
|
He S, Wang P, Zhang YM, Dai P, Nazir MF, Jia Y, Peng Z, Pan Z, Sun J, Wang L, Sun G, Du X. Introgression Leads to Genomic Divergence and Responsible for Important Traits in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:929. [PMID: 32774337 PMCID: PMC7381389 DOI: 10.3389/fpls.2020.00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 05/06/2023]
Abstract
Understanding the genetic diversity and population structure of germplasms is essential when selecting parents for crop breeding. The genomic changes that occurred during the domestication and improvement of Upland cotton (Gossypium hirsutum) remains poorly understood. Besides, the available genetic resources from cotton cultivars are limited. By applying restriction site-associated DNA marker sequencing (RAD-seq) technology to 582 tetraploid cotton accessions, we confirmed distinct genomic regions on chromosomes A06 and A08 in Upland cotton cultivar subgroups. Based on the pedigree, reported QTLs, introgression analyses, and genome-wide association study (GWAS), we suggest that these divergent regions might have resulted from the introgression of exotic lineages of G. hirsutum landraces and their wild relatives. These regions were the typical genomic signatures that might be responsible for maturity and fiber quality on chromosome A06 and chromosome A08, respectively. Moreover, these genomic regions are located in the putative pericentromeric regions, implying that their application will be challenging. In the study, based on high-density SNP markers, we reported two genomic signatures on chromosomes A06 and A08, which might originate from the introgression events in the Upland cotton population. Our study provides new insights for understanding the impact of historic introgressions on population divergence and important agronomic traits of modern Upland cotton cultivars.
Collapse
Affiliation(s)
- Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengpeng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Panhong Dai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junling Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liru Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- Department of Computer Science and Information Engineering, Data Mining Institute, Anyang Institute of Technology, Anyang, China
- *Correspondence: Gaofei Sun, ; Xiongming Du,
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Gaofei Sun, ; Xiongming Du,
| |
Collapse
|
12
|
Dai P, Miao Y, He S, Pan Z, Jia Y, Cai Y, Sun J, Wang L, Pang B, Wang M, Du X. Identifying favorable alleles for improving key agronomic traits in upland cotton. BMC PLANT BIOLOGY 2019; 19:138. [PMID: 30975072 PMCID: PMC6458685 DOI: 10.1186/s12870-019-1725-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/19/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Gossypium hirsutum L. is grown worldwide and is the largest source of natural fiber crop. We focus on exploring the favorable alleles (FAs) for upland cotton varieties improvement, and further understanding the history of accessions selection and acumination of favorable allele during breeding. RESULTS The genetic basis of phenotypic variation has been studied. But the accumulation of favorable alleles in cotton breeding history in unknown, and potential favorable alleles to enhance key agronomic traits in the future cotton varieties have not yet been identified. Therefore, 419 upland cotton accessions were screened, representing a diversity of phenotypic variations of 7362 G. hirsutum, and 15 major traits were investigated in 6 environments. These accessions were categorized into 3 periods (early, medium, and modern) according to breeding history. All accessions were divided into two major groups using 299 polymorphic microsatellite markers: G1 (high fiber yield and quality, late maturity) and G2 (low fiber yield and quality, early maturity). The proportion of G1 genotype gradually increased from early to modern breeding periods. Furthermore, 21 markers (71 alleles) were significantly associated (-log P > 4) with 15 agronomic traits in multiple environments. Seventeen alleles were identified as FAs; these alleles accumulated more in the modern period than in other periods, consistent with their phenotypic variation trends in breeding history. Our results demonstrate that the favorable alleles accumulated through breeding effects, especially for common favorable alleles. However, the potential elite accessions could be rapidly screened by rare favorable alleles. CONCLUSION In our study, genetic variation and genome-wide associations for 419 upland cotton accessions were analyzed. Two favorable allele types were identified during three breeding periods, providing important information for yield/quality improvement of upland cotton germplasm.
Collapse
Affiliation(s)
- Panhong Dai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
- Agricultural College, Yangtze University, Jingzhou, 434000 China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475000 China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475000 China
| | - Junling Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Liru Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Baoyin Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Mi Wang
- Agricultural College, Yangtze University, Jingzhou, 434000 China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|